Certification Problem
Input (TPDB TRS_Standard/SK90/2.30)
The rewrite relation of the following TRS is considered.
not(x) |
→ |
xor(x,true) |
(1) |
implies(x,y) |
→ |
xor(and(x,y),xor(x,true)) |
(2) |
or(x,y) |
→ |
xor(and(x,y),xor(x,y)) |
(3) |
=(x,y) |
→ |
xor(x,xor(y,true)) |
(4) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by ttt2 @ termCOMP 2023)
1 Rule Removal
Using the
linear polynomial interpretation over the naturals
[and(x1, x2)] |
= |
1 · x1 + 3 · x2 + 0 |
[true] |
= |
0 |
[implies(x1, x2)] |
= |
10 · x1 + 6 · x2 + 0 |
[or(x1, x2)] |
= |
10 · x1 + 22 · x2 + 0 |
[not(x1)] |
= |
2 · x1 + 0 |
[=(x1, x2)] |
= |
2 · x1 + 8 · x2 + 1 |
[xor(x1, x2)] |
= |
2 · x1 + 4 · x2 + 0 |
all of the following rules can be deleted.
=(x,y) |
→ |
xor(x,xor(y,true)) |
(4) |
1.1 Rule Removal
Using the
linear polynomial interpretation over the naturals
[and(x1, x2)] |
= |
1 · x1 + 10 · x2 + 0 |
[true] |
= |
0 |
[implies(x1, x2)] |
= |
2 · x1 + 10 · x2 + 0 |
[or(x1, x2)] |
= |
2 · x1 + 11 · x2 + 1 |
[not(x1)] |
= |
1 · x1 + 0 |
[xor(x1, x2)] |
= |
1 · x1 + 1 · x2 + 0 |
all of the following rules can be deleted.
or(x,y) |
→ |
xor(and(x,y),xor(x,y)) |
(3) |
1.1.1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the naturals
[and(x1, x2)] |
= |
· x1 + · x2 +
|
[true] |
= |
|
[implies(x1, x2)] |
= |
· x1 + · x2 +
|
[not(x1)] |
= |
· x1 +
|
[xor(x1, x2)] |
= |
· x1 + · x2 +
|
all of the following rules can be deleted.
1.1.1.1 Rule Removal
Using the
linear polynomial interpretation over the naturals
[and(x1, x2)] |
= |
2 · x1 + 8 · x2 + 0 |
[true] |
= |
0 |
[implies(x1, x2)] |
= |
12 · x1 + 18 · x2 + 2 |
[xor(x1, x2)] |
= |
2 · x1 + 4 · x2 + 0 |
all of the following rules can be deleted.
implies(x,y) |
→ |
xor(and(x,y),xor(x,true)) |
(2) |
1.1.1.1.1 R is empty
There are no rules in the TRS. Hence, it is terminating.