The rewrite relation of the following TRS is considered.
or(true,y) | → | true | (1) |
or(x,true) | → | true | (2) |
or(false,false) | → | false | (3) |
mem(x,nil) | → | false | (4) |
mem(x,set(y)) | → | =(x,y) | (5) |
mem(x,union(y,z)) | → | or(mem(x,y),mem(x,z)) | (6) |
prec(union) | = | 0 | status(union) | = | [2, 1] | list-extension(union) | = | Lex | ||
prec(=) | = | 0 | status(=) | = | [2, 1] | list-extension(=) | = | Lex | ||
prec(set) | = | 0 | status(set) | = | [1] | list-extension(set) | = | Lex | ||
prec(mem) | = | 1 | status(mem) | = | [1, 2] | list-extension(mem) | = | Lex | ||
prec(nil) | = | 0 | status(nil) | = | [] | list-extension(nil) | = | Lex | ||
prec(false) | = | 0 | status(false) | = | [] | list-extension(false) | = | Lex | ||
prec(or) | = | 0 | status(or) | = | [2, 1] | list-extension(or) | = | Lex | ||
prec(true) | = | 0 | status(true) | = | [] | list-extension(true) | = | Lex |
[union(x1, x2)] | = | max(2, 6 + 1 · x1, 2 + 1 · x2) |
[=(x1, x2)] | = | max(0, 0 + 1 · x1, 0 + 1 · x2) |
[set(x1)] | = | max(0, 7 + 1 · x1) |
[mem(x1, x2)] | = | max(0, 4 + 1 · x1, 1 + 1 · x2) |
[nil] | = | max(0) |
[false] | = | max(0) |
[or(x1, x2)] | = | max(7, 0 + 1 · x1, 0 + 1 · x2) |
[true] | = | max(4) |
or(true,y) | → | true | (1) |
or(x,true) | → | true | (2) |
or(false,false) | → | false | (3) |
mem(x,nil) | → | false | (4) |
mem(x,set(y)) | → | =(x,y) | (5) |
mem(x,union(y,z)) | → | or(mem(x,y),mem(x,z)) | (6) |
There are no rules in the TRS. Hence, it is terminating.