The rewrite relation of the following TRS is considered.
not(x) | → | xor(x,true) | (1) |
or(x,y) | → | xor(and(x,y),xor(x,y)) | (2) |
implies(x,y) | → | xor(and(x,y),xor(x,true)) | (3) |
and(x,true) | → | x | (4) |
and(x,false) | → | false | (5) |
and(x,x) | → | x | (6) |
xor(x,false) | → | x | (7) |
xor(x,x) | → | false | (8) |
and(xor(x,y),z) | → | xor(and(x,z),and(y,z)) | (9) |
prec(false) | = | 0 | status(false) | = | [] | list-extension(false) | = | Lex | ||
prec(implies) | = | 4 | status(implies) | = | [2, 1] | list-extension(implies) | = | Lex | ||
prec(and) | = | 1 | status(and) | = | [2, 1] | list-extension(and) | = | Lex | ||
prec(or) | = | 0 | status(or) | = | [2, 1] | list-extension(or) | = | Lex | ||
prec(xor) | = | 0 | status(xor) | = | [2, 1] | list-extension(xor) | = | Lex | ||
prec(true) | = | 0 | status(true) | = | [] | list-extension(true) | = | Lex | ||
prec(not) | = | 0 | status(not) | = | [1] | list-extension(not) | = | Lex |
[false] | = | max(0) |
[implies(x1, x2)] | = | max(1, 6 + 1 · x1, 0 + 1 · x2) |
[and(x1, x2)] | = | max(0, 0 + 1 · x1, 0 + 1 · x2) |
[or(x1, x2)] | = | max(0, 1 + 1 · x1, 2 + 1 · x2) |
[xor(x1, x2)] | = | max(1, 0 + 1 · x1, 0 + 1 · x2) |
[true] | = | max(6) |
[not(x1)] | = | max(7, 1 + 1 · x1) |
not(x) | → | xor(x,true) | (1) |
or(x,y) | → | xor(and(x,y),xor(x,y)) | (2) |
implies(x,y) | → | xor(and(x,y),xor(x,true)) | (3) |
and(x,true) | → | x | (4) |
and(x,false) | → | false | (5) |
and(x,x) | → | x | (6) |
xor(x,false) | → | x | (7) |
xor(x,x) | → | false | (8) |
and(xor(x,y),z) | → | xor(and(x,z),and(y,z)) | (9) |
There are no rules in the TRS. Hence, it is terminating.