The rewrite relation of the following TRS is considered.
intersect'ii'in(cons(X,X0),cons(X,X1)) |
→ |
intersect'ii'out |
(1) |
intersect'ii'in(Xs,cons(X0,Ys)) |
→ |
u'1'1(intersect'ii'in(Xs,Ys)) |
(2) |
u'1'1(intersect'ii'out) |
→ |
intersect'ii'out |
(3) |
intersect'ii'in(cons(X0,Xs),Ys) |
→ |
u'2'1(intersect'ii'in(Xs,Ys)) |
(4) |
u'2'1(intersect'ii'out) |
→ |
intersect'ii'out |
(5) |
reduce'ii'in(sequent(cons(if(A,B),Fs),Gs),NF) |
→ |
u'3'1(reduce'ii'in(sequent(cons(x'2b(x'2d(B),A),Fs),Gs),NF)) |
(6) |
u'3'1(reduce'ii'out) |
→ |
reduce'ii'out |
(7) |
reduce'ii'in(sequent(cons(iff(A,B),Fs),Gs),NF) |
→ |
u'4'1(reduce'ii'in(sequent(cons(x'2a(if(A,B),if(B,A)),Fs),Gs),NF)) |
(8) |
u'4'1(reduce'ii'out) |
→ |
reduce'ii'out |
(9) |
reduce'ii'in(sequent(cons(x'2a(F1,F2),Fs),Gs),NF) |
→ |
u'5'1(reduce'ii'in(sequent(cons(F1,cons(F2,Fs)),Gs),NF)) |
(10) |
u'5'1(reduce'ii'out) |
→ |
reduce'ii'out |
(11) |
reduce'ii'in(sequent(cons(x'2b(F1,F2),Fs),Gs),NF) |
→ |
u'6'1(reduce'ii'in(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) |
(12) |
u'6'1(reduce'ii'out,F2,Fs,Gs,NF) |
→ |
u'6'2(reduce'ii'in(sequent(cons(F2,Fs),Gs),NF)) |
(13) |
u'6'2(reduce'ii'out) |
→ |
reduce'ii'out |
(14) |
reduce'ii'in(sequent(cons(x'2d(F1),Fs),Gs),NF) |
→ |
u'7'1(reduce'ii'in(sequent(Fs,cons(F1,Gs)),NF)) |
(15) |
u'7'1(reduce'ii'out) |
→ |
reduce'ii'out |
(16) |
reduce'ii'in(sequent(Fs,cons(if(A,B),Gs)),NF) |
→ |
u'8'1(reduce'ii'in(sequent(Fs,cons(x'2b(x'2d(B),A),Gs)),NF)) |
(17) |
u'8'1(reduce'ii'out) |
→ |
reduce'ii'out |
(18) |
reduce'ii'in(sequent(Fs,cons(iff(A,B),Gs)),NF) |
→ |
u'9'1(reduce'ii'in(sequent(Fs,cons(x'2a(if(A,B),if(B,A)),Gs)),NF)) |
(19) |
u'9'1(reduce'ii'out) |
→ |
reduce'ii'out |
(20) |
reduce'ii'in(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) |
→ |
u'10'1(reduce'ii'in(sequent(Fs,Gs),sequent(cons(p(V),Left),Right))) |
(21) |
u'10'1(reduce'ii'out) |
→ |
reduce'ii'out |
(22) |
reduce'ii'in(sequent(Fs,cons(x'2b(G1,G2),Gs)),NF) |
→ |
u'11'1(reduce'ii'in(sequent(Fs,cons(G1,cons(G2,Gs))),NF)) |
(23) |
u'11'1(reduce'ii'out) |
→ |
reduce'ii'out |
(24) |
reduce'ii'in(sequent(Fs,cons(x'2a(G1,G2),Gs)),NF) |
→ |
u'12'1(reduce'ii'in(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) |
(25) |
u'12'1(reduce'ii'out,Fs,G2,Gs,NF) |
→ |
u'12'2(reduce'ii'in(sequent(Fs,cons(G2,Gs)),NF)) |
(26) |
u'12'2(reduce'ii'out) |
→ |
reduce'ii'out |
(27) |
reduce'ii'in(sequent(Fs,cons(x'2d(G1),Gs)),NF) |
→ |
u'13'1(reduce'ii'in(sequent(cons(G1,Fs),Gs),NF)) |
(28) |
u'13'1(reduce'ii'out) |
→ |
reduce'ii'out |
(29) |
reduce'ii'in(sequent(nil,cons(p(V),Gs)),sequent(Left,Right)) |
→ |
u'14'1(reduce'ii'in(sequent(nil,Gs),sequent(Left,cons(p(V),Right)))) |
(30) |
u'14'1(reduce'ii'out) |
→ |
reduce'ii'out |
(31) |
reduce'ii'in(sequent(nil,nil),sequent(F1,F2)) |
→ |
u'15'1(intersect'ii'in(F1,F2)) |
(32) |
u'15'1(intersect'ii'out) |
→ |
reduce'ii'out |
(33) |
tautology'i'in(F) |
→ |
u'16'1(reduce'ii'in(sequent(nil,cons(F,nil)),sequent(nil,nil))) |
(34) |
u'16'1(reduce'ii'out) |
→ |
tautology'i'out |
(35) |
intersect'ii'in#(Xs,cons(X0,Ys)) |
→ |
intersect'ii'in#(Xs,Ys) |
(36) |
intersect'ii'in#(Xs,cons(X0,Ys)) |
→ |
u'1'1#(intersect'ii'in(Xs,Ys)) |
(37) |
intersect'ii'in#(cons(X0,Xs),Ys) |
→ |
intersect'ii'in#(Xs,Ys) |
(38) |
intersect'ii'in#(cons(X0,Xs),Ys) |
→ |
u'2'1#(intersect'ii'in(Xs,Ys)) |
(39) |
reduce'ii'in#(sequent(cons(if(A,B),Fs),Gs),NF) |
→ |
reduce'ii'in#(sequent(cons(x'2b(x'2d(B),A),Fs),Gs),NF) |
(40) |
reduce'ii'in#(sequent(cons(if(A,B),Fs),Gs),NF) |
→ |
u'3'1#(reduce'ii'in(sequent(cons(x'2b(x'2d(B),A),Fs),Gs),NF)) |
(41) |
reduce'ii'in#(sequent(cons(iff(A,B),Fs),Gs),NF) |
→ |
reduce'ii'in#(sequent(cons(x'2a(if(A,B),if(B,A)),Fs),Gs),NF) |
(42) |
reduce'ii'in#(sequent(cons(iff(A,B),Fs),Gs),NF) |
→ |
u'4'1#(reduce'ii'in(sequent(cons(x'2a(if(A,B),if(B,A)),Fs),Gs),NF)) |
(43) |
reduce'ii'in#(sequent(cons(x'2a(F1,F2),Fs),Gs),NF) |
→ |
reduce'ii'in#(sequent(cons(F1,cons(F2,Fs)),Gs),NF) |
(44) |
reduce'ii'in#(sequent(cons(x'2a(F1,F2),Fs),Gs),NF) |
→ |
u'5'1#(reduce'ii'in(sequent(cons(F1,cons(F2,Fs)),Gs),NF)) |
(45) |
reduce'ii'in#(sequent(cons(x'2b(F1,F2),Fs),Gs),NF) |
→ |
reduce'ii'in#(sequent(cons(F1,Fs),Gs),NF) |
(46) |
reduce'ii'in#(sequent(cons(x'2b(F1,F2),Fs),Gs),NF) |
→ |
u'6'1#(reduce'ii'in(sequent(cons(F1,Fs),Gs),NF),F2,Fs,Gs,NF) |
(47) |
u'6'1#(reduce'ii'out,F2,Fs,Gs,NF) |
→ |
reduce'ii'in#(sequent(cons(F2,Fs),Gs),NF) |
(48) |
u'6'1#(reduce'ii'out,F2,Fs,Gs,NF) |
→ |
u'6'2#(reduce'ii'in(sequent(cons(F2,Fs),Gs),NF)) |
(49) |
reduce'ii'in#(sequent(cons(x'2d(F1),Fs),Gs),NF) |
→ |
reduce'ii'in#(sequent(Fs,cons(F1,Gs)),NF) |
(50) |
reduce'ii'in#(sequent(cons(x'2d(F1),Fs),Gs),NF) |
→ |
u'7'1#(reduce'ii'in(sequent(Fs,cons(F1,Gs)),NF)) |
(51) |
reduce'ii'in#(sequent(Fs,cons(if(A,B),Gs)),NF) |
→ |
reduce'ii'in#(sequent(Fs,cons(x'2b(x'2d(B),A),Gs)),NF) |
(52) |
reduce'ii'in#(sequent(Fs,cons(if(A,B),Gs)),NF) |
→ |
u'8'1#(reduce'ii'in(sequent(Fs,cons(x'2b(x'2d(B),A),Gs)),NF)) |
(53) |
reduce'ii'in#(sequent(Fs,cons(iff(A,B),Gs)),NF) |
→ |
reduce'ii'in#(sequent(Fs,cons(x'2a(if(A,B),if(B,A)),Gs)),NF) |
(54) |
reduce'ii'in#(sequent(Fs,cons(iff(A,B),Gs)),NF) |
→ |
u'9'1#(reduce'ii'in(sequent(Fs,cons(x'2a(if(A,B),if(B,A)),Gs)),NF)) |
(55) |
reduce'ii'in#(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) |
→ |
reduce'ii'in#(sequent(Fs,Gs),sequent(cons(p(V),Left),Right)) |
(56) |
reduce'ii'in#(sequent(cons(p(V),Fs),Gs),sequent(Left,Right)) |
→ |
u'10'1#(reduce'ii'in(sequent(Fs,Gs),sequent(cons(p(V),Left),Right))) |
(57) |
reduce'ii'in#(sequent(Fs,cons(x'2b(G1,G2),Gs)),NF) |
→ |
reduce'ii'in#(sequent(Fs,cons(G1,cons(G2,Gs))),NF) |
(58) |
reduce'ii'in#(sequent(Fs,cons(x'2b(G1,G2),Gs)),NF) |
→ |
u'11'1#(reduce'ii'in(sequent(Fs,cons(G1,cons(G2,Gs))),NF)) |
(59) |
reduce'ii'in#(sequent(Fs,cons(x'2a(G1,G2),Gs)),NF) |
→ |
reduce'ii'in#(sequent(Fs,cons(G1,Gs)),NF) |
(60) |
reduce'ii'in#(sequent(Fs,cons(x'2a(G1,G2),Gs)),NF) |
→ |
u'12'1#(reduce'ii'in(sequent(Fs,cons(G1,Gs)),NF),Fs,G2,Gs,NF) |
(61) |
u'12'1#(reduce'ii'out,Fs,G2,Gs,NF) |
→ |
reduce'ii'in#(sequent(Fs,cons(G2,Gs)),NF) |
(62) |
u'12'1#(reduce'ii'out,Fs,G2,Gs,NF) |
→ |
u'12'2#(reduce'ii'in(sequent(Fs,cons(G2,Gs)),NF)) |
(63) |
reduce'ii'in#(sequent(Fs,cons(x'2d(G1),Gs)),NF) |
→ |
reduce'ii'in#(sequent(cons(G1,Fs),Gs),NF) |
(64) |
reduce'ii'in#(sequent(Fs,cons(x'2d(G1),Gs)),NF) |
→ |
u'13'1#(reduce'ii'in(sequent(cons(G1,Fs),Gs),NF)) |
(65) |
reduce'ii'in#(sequent(nil,cons(p(V),Gs)),sequent(Left,Right)) |
→ |
reduce'ii'in#(sequent(nil,Gs),sequent(Left,cons(p(V),Right))) |
(66) |
reduce'ii'in#(sequent(nil,cons(p(V),Gs)),sequent(Left,Right)) |
→ |
u'14'1#(reduce'ii'in(sequent(nil,Gs),sequent(Left,cons(p(V),Right)))) |
(67) |
reduce'ii'in#(sequent(nil,nil),sequent(F1,F2)) |
→ |
intersect'ii'in#(F1,F2) |
(68) |
reduce'ii'in#(sequent(nil,nil),sequent(F1,F2)) |
→ |
u'15'1#(intersect'ii'in(F1,F2)) |
(69) |
tautology'i'in#(F) |
→ |
reduce'ii'in#(sequent(nil,cons(F,nil)),sequent(nil,nil)) |
(70) |
tautology'i'in#(F) |
→ |
u'16'1#(reduce'ii'in(sequent(nil,cons(F,nil)),sequent(nil,nil))) |
(71) |
The dependency pairs are split into 2
components.