The rewrite relation of the following TRS is considered.
| -(x,0) | → | x | (1) |
| -(s(x),s(y)) | → | -(x,y) | (2) |
| p(s(x)) | → | x | (3) |
| f(s(x),y) | → | f(p(-(s(x),y)),p(-(y,s(x)))) | (4) |
| f(x,s(y)) | → | f(p(-(x,s(y))),p(-(s(y),x))) | (5) |
| -#(s(x),s(y)) | → | -#(x,y) | (6) |
| f#(s(x),y) | → | -#(y,s(x)) | (7) |
| f#(s(x),y) | → | p#(-(y,s(x))) | (8) |
| f#(s(x),y) | → | -#(s(x),y) | (9) |
| f#(s(x),y) | → | p#(-(s(x),y)) | (10) |
| f#(s(x),y) | → | f#(p(-(s(x),y)),p(-(y,s(x)))) | (11) |
| f#(x,s(y)) | → | -#(s(y),x) | (12) |
| f#(x,s(y)) | → | p#(-(s(y),x)) | (13) |
| f#(x,s(y)) | → | -#(x,s(y)) | (14) |
| f#(x,s(y)) | → | p#(-(x,s(y))) | (15) |
| f#(x,s(y)) | → | f#(p(-(x,s(y))),p(-(s(y),x))) | (16) |
The dependency pairs are split into 2 components.
| f#(s(x),y) | → | f#(p(-(s(x),y)),p(-(y,s(x)))) | (11) |
| f#(x,s(y)) | → | f#(p(-(x,s(y))),p(-(s(y),x))) | (16) |
| [-(x1, x2)] | = | 0 · x1 + -∞ · x2 + 8 |
| [p(x1)] | = | -4 · x1 + 0 |
| [0] | = | 0 |
| [f#(x1, x2)] | = | -4 · x1 + -∞ · x2 + 1 |
| [s(x1)] | = | 4 · x1 + 6 |
| -(s(x),s(y)) | → | -(x,y) | (2) |
| -(x,0) | → | x | (1) |
| p(s(x)) | → | x | (3) |
| f#(s(x),y) | → | f#(p(-(s(x),y)),p(-(y,s(x)))) | (11) |
| [-(x1, x2)] | = | 1 · x1 + 0 · x2 + -16 |
| [p(x1)] | = | -5 · x1 + 0 |
| [0] | = | 2 |
| [f#(x1, x2)] | = | 2 · x1 + 0 · x2 + 0 |
| [s(x1)] | = | 5 · x1 + 3 |
| -(x,0) | → | x | (1) |
| -(s(x),s(y)) | → | -(x,y) | (2) |
| p(s(x)) | → | x | (3) |
| f#(x,s(y)) | → | f#(p(-(x,s(y))),p(-(s(y),x))) | (16) |
There are no pairs anymore.
| -#(s(x),s(y)) | → | -#(x,y) | (6) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| -#(s(x),s(y)) | → | -#(x,y) | (6) |
| 2 | > | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.