Certification Problem

Input (TPDB TRS_Standard/Secret_05_TRS/tpa2)

The rewrite relation of the following TRS is considered.

-(x,0) x (1)
-(s(x),s(y)) -(x,y) (2)
p(s(x)) x (3)
f(s(x),y) f(p(-(s(x),y)),p(-(y,s(x)))) (4)
f(x,s(y)) f(p(-(x,s(y))),p(-(s(y),x))) (5)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by ttt2 @ termCOMP 2023)

1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
-#(s(x),s(y)) -#(x,y) (6)
f#(s(x),y) -#(y,s(x)) (7)
f#(s(x),y) p#(-(y,s(x))) (8)
f#(s(x),y) -#(s(x),y) (9)
f#(s(x),y) p#(-(s(x),y)) (10)
f#(s(x),y) f#(p(-(s(x),y)),p(-(y,s(x)))) (11)
f#(x,s(y)) -#(s(y),x) (12)
f#(x,s(y)) p#(-(s(y),x)) (13)
f#(x,s(y)) -#(x,s(y)) (14)
f#(x,s(y)) p#(-(x,s(y))) (15)
f#(x,s(y)) f#(p(-(x,s(y))),p(-(s(y),x))) (16)

1.1 Dependency Graph Processor

The dependency pairs are split into 2 components.