The rewrite relation of the following TRS is considered.
b(y,z) | → | f(c(c(y,z,z),a,a)) | (1) |
b(b(z,y),a) | → | z | (2) |
c(f(z),f(c(a,x,a)),y) | → | c(f(b(x,z)),c(z,y,a),a) | (3) |
b#(y,z) | → | c#(y,z,z) | (4) |
b#(y,z) | → | c#(c(y,z,z),a,a) | (5) |
c#(f(z),f(c(a,x,a)),y) | → | c#(z,y,a) | (6) |
c#(f(z),f(c(a,x,a)),y) | → | b#(x,z) | (7) |
c#(f(z),f(c(a,x,a)),y) | → | c#(f(b(x,z)),c(z,y,a),a) | (8) |
The dependency pairs are split into 1 component.
c#(f(z),f(c(a,x,a)),y) | → | c#(z,y,a) | (6) |
c#(f(z),f(c(a,x,a)),y) | → | b#(x,z) | (7) |
b#(y,z) | → | c#(y,z,z) | (4) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
c#(f(z),f(c(a,x,a)),y) | → | c#(z,y,a) | (6) |
3 | ≥ | 2 | |
2 | > | 3 | |
1 | > | 1 | |
c#(f(z),f(c(a,x,a)),y) | → | b#(x,z) | (7) |
2 | > | 1 | |
1 | > | 2 | |
b#(y,z) | → | c#(y,z,z) | (4) |
2 | ≥ | 3 | |
2 | ≥ | 2 | |
1 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.