The rewrite relation of the following TRS is considered.
| D(t) | → | s(h) | (1) |
| D(constant) | → | h | (2) |
| D(b(x,y)) | → | b(D(x),D(y)) | (3) |
| D(c(x,y)) | → | b(c(y,D(x)),c(x,D(y))) | (4) |
| D(m(x,y)) | → | m(D(x),D(y)) | (5) |
| D(opp(x)) | → | opp(D(x)) | (6) |
| D(div(x,y)) | → | m(div(D(x),y),div(c(x,D(y)),pow(y,2))) | (7) |
| D(ln(x)) | → | div(D(x),x) | (8) |
| D(pow(x,y)) | → | b(c(c(y,pow(x,m(y,1))),D(x)),c(c(pow(x,y),ln(x)),D(y))) | (9) |
| b(h,x) | → | x | (10) |
| b(x,h) | → | x | (11) |
| b(s(x),s(y)) | → | s(s(b(x,y))) | (12) |
| b(b(x,y),z) | → | b(x,b(y,z)) | (13) |
| D#(b(x,y)) | → | D#(y) | (14) |
| D#(b(x,y)) | → | D#(x) | (15) |
| D#(b(x,y)) | → | b#(D(x),D(y)) | (16) |
| D#(c(x,y)) | → | D#(y) | (17) |
| D#(c(x,y)) | → | D#(x) | (18) |
| D#(c(x,y)) | → | b#(c(y,D(x)),c(x,D(y))) | (19) |
| D#(m(x,y)) | → | D#(y) | (20) |
| D#(m(x,y)) | → | D#(x) | (21) |
| D#(opp(x)) | → | D#(x) | (22) |
| D#(div(x,y)) | → | D#(y) | (23) |
| D#(div(x,y)) | → | D#(x) | (24) |
| D#(ln(x)) | → | D#(x) | (25) |
| D#(pow(x,y)) | → | D#(y) | (26) |
| D#(pow(x,y)) | → | D#(x) | (27) |
| D#(pow(x,y)) | → | b#(c(c(y,pow(x,m(y,1))),D(x)),c(c(pow(x,y),ln(x)),D(y))) | (28) |
| b#(s(x),s(y)) | → | b#(x,y) | (29) |
| b#(b(x,y),z) | → | b#(y,z) | (30) |
| b#(b(x,y),z) | → | b#(x,b(y,z)) | (31) |
The dependency pairs are split into 2 components.
| D#(ln(x)) | → | D#(x) | (25) |
| D#(pow(x,y)) | → | D#(x) | (27) |
| D#(pow(x,y)) | → | D#(y) | (26) |
| D#(div(x,y)) | → | D#(x) | (24) |
| D#(div(x,y)) | → | D#(y) | (23) |
| D#(opp(x)) | → | D#(x) | (22) |
| D#(m(x,y)) | → | D#(x) | (21) |
| D#(m(x,y)) | → | D#(y) | (20) |
| D#(c(x,y)) | → | D#(x) | (18) |
| D#(c(x,y)) | → | D#(y) | (17) |
| D#(b(x,y)) | → | D#(x) | (15) |
| D#(b(x,y)) | → | D#(y) | (14) |
| π(D#) | = | 1 |
| D#(ln(x)) | → | D#(x) | (25) |
| D#(pow(x,y)) | → | D#(x) | (27) |
| D#(pow(x,y)) | → | D#(y) | (26) |
| D#(div(x,y)) | → | D#(x) | (24) |
| D#(div(x,y)) | → | D#(y) | (23) |
| D#(opp(x)) | → | D#(x) | (22) |
| D#(m(x,y)) | → | D#(x) | (21) |
| D#(m(x,y)) | → | D#(y) | (20) |
| D#(c(x,y)) | → | D#(x) | (18) |
| D#(c(x,y)) | → | D#(y) | (17) |
| D#(b(x,y)) | → | D#(x) | (15) |
| D#(b(x,y)) | → | D#(y) | (14) |
There are no pairs anymore.
| b#(b(x,y),z) | → | b#(y,z) | (30) |
| b#(b(x,y),z) | → | b#(x,b(y,z)) | (31) |
| b#(s(x),s(y)) | → | b#(x,y) | (29) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| b#(b(x,y),z) | → | b#(y,z) | (30) |
| 2 | ≥ | 2 | |
| 1 | > | 1 | |
| b#(b(x,y),z) | → | b#(x,b(y,z)) | (31) |
| 1 | > | 1 | |
| b#(s(x),s(y)) | → | b#(x,y) | (29) |
| 2 | > | 2 | |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.