The rewrite relation of the following TRS is considered.
| app(nil,k) | → | k | (1) |
| app(l,nil) | → | l | (2) |
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (3) |
| sum(cons(x,nil)) | → | cons(x,nil) | (4) |
| sum(cons(x,cons(y,l))) | → | sum(cons(a(x,y,h),l)) | (5) |
| a(h,h,x) | → | s(x) | (6) |
| a(x,s(y),h) | → | a(x,y,s(h)) | (7) |
| a(x,s(y),s(z)) | → | a(x,y,a(x,s(y),z)) | (8) |
| a(s(x),h,z) | → | a(x,z,z) | (9) |
| prec(s) | = | 0 | status(s) | = | [1] | list-extension(s) | = | Lex | ||
| prec(a) | = | 1 | status(a) | = | [1, 2, 3] | list-extension(a) | = | Lex | ||
| prec(h) | = | 0 | status(h) | = | [] | list-extension(h) | = | Lex | ||
| prec(sum) | = | 3 | status(sum) | = | [1] | list-extension(sum) | = | Lex | ||
| prec(cons) | = | 2 | status(cons) | = | [2, 1] | list-extension(cons) | = | Lex | ||
| prec(app) | = | 3 | status(app) | = | [2, 1] | list-extension(app) | = | Lex | ||
| prec(nil) | = | 0 | status(nil) | = | [] | list-extension(nil) | = | Lex |
| [s(x1)] | = | max(0, 0 + 1 · x1) |
| [a(x1, x2, x3)] | = | max(0, 0 + 1 · x1, 0 + 1 · x2, 0 + 1 · x3) |
| [h] | = | max(0) |
| [sum(x1)] | = | max(0, 0 + 1 · x1) |
| [cons(x1, x2)] | = | max(0, 0 + 1 · x1, 0 + 1 · x2) |
| [app(x1, x2)] | = | max(0, 0 + 1 · x1, 5 + 1 · x2) |
| [nil] | = | max(0) |
| app(nil,k) | → | k | (1) |
| app(l,nil) | → | l | (2) |
| app(cons(x,l),k) | → | cons(x,app(l,k)) | (3) |
| sum(cons(x,nil)) | → | cons(x,nil) | (4) |
| sum(cons(x,cons(y,l))) | → | sum(cons(a(x,y,h),l)) | (5) |
| a(h,h,x) | → | s(x) | (6) |
| a(x,s(y),h) | → | a(x,y,s(h)) | (7) |
| a(x,s(y),s(z)) | → | a(x,y,a(x,s(y),z)) | (8) |
| a(s(x),h,z) | → | a(x,z,z) | (9) |
There are no rules in the TRS. Hence, it is terminating.