The rewrite relation of the following TRS is considered.
The dependency pairs are split into 4
components.
-
The
1st
component contains the
pair
|
+#(+(x,y),z) |
→ |
+#(y,z) |
(26) |
|
+#(+(x,y),z) |
→ |
+#(x,+(y,z)) |
(27) |
|
+#(s(x),s(y)) |
→ |
+#(x,y) |
(23) |
1.1.1 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
|
+#(+(x,y),z) |
→ |
+#(y,z) |
(26) |
|
|
| 2 |
≥ |
2 |
| 1 |
> |
1 |
|
+#(+(x,y),z) |
→ |
+#(x,+(y,z)) |
(27) |
|
| 1 |
> |
1 |
|
+#(s(x),s(y)) |
→ |
+#(x,y) |
(23) |
|
|
| 2 |
> |
2 |
| 1 |
> |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-
The
2nd
component contains the
pair
|
app#(cons(x,l),k) |
→ |
app#(l,k) |
(28) |
1.1.2 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
|
app#(cons(x,l),k) |
→ |
app#(l,k) |
(28) |
|
|
| 2 |
≥ |
2 |
| 1 |
> |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-
The
3rd
component contains the
pair
|
sum#(cons(x,cons(y,l))) |
→ |
sum#(cons(a(x,y,h,h),l)) |
(30) |
1.1.3 Subterm Criterion Processor
We use the projection to multisets
| π(sum#)
|
= |
{
1
}
|
| π(cons)
|
= |
{
2, 2, 2
}
|
to remove the pairs:
|
sum#(cons(x,cons(y,l))) |
→ |
sum#(cons(a(x,y,h,h),l)) |
(30) |
1.1.3.1 P is empty
There are no pairs anymore.
-
The
4th
component contains the
pair
|
a#(s(l),h,h,z) |
→ |
a#(l,z,h,z) |
(22) |
|
a#(l,s(x),h,z) |
→ |
a#(l,x,z,z) |
(21) |
|
a#(l,x,s(y),s(z)) |
→ |
a#(l,x,y,a(l,x,s(y),z)) |
(20) |
|
a#(l,x,s(y),s(z)) |
→ |
a#(l,x,s(y),z) |
(19) |
|
a#(l,x,s(y),h) |
→ |
a#(l,x,y,s(h)) |
(18) |
1.1.4 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
|
a#(s(l),h,h,z) |
→ |
a#(l,z,h,z) |
(22) |
|
|
| 4 |
≥ |
4 |
| 4 |
≥ |
2 |
| 3 |
≥ |
3 |
| 2 |
≥ |
3 |
| 1 |
> |
1 |
|
a#(l,s(x),h,z) |
→ |
a#(l,x,z,z) |
(21) |
|
|
| 4 |
≥ |
4 |
| 4 |
≥ |
3 |
| 2 |
> |
2 |
| 1 |
≥ |
1 |
|
a#(l,x,s(y),s(z)) |
→ |
a#(l,x,y,a(l,x,s(y),z)) |
(20) |
|
|
| 3 |
> |
3 |
| 2 |
≥ |
2 |
| 1 |
≥ |
1 |
|
a#(l,x,s(y),s(z)) |
→ |
a#(l,x,s(y),z) |
(19) |
|
|
| 4 |
> |
4 |
| 3 |
≥ |
3 |
| 2 |
≥ |
2 |
| 1 |
≥ |
1 |
|
a#(l,x,s(y),h) |
→ |
a#(l,x,y,s(h)) |
(18) |
|
|
| 3 |
> |
3 |
| 2 |
≥ |
2 |
| 1 |
≥ |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.