The rewrite relation of the following TRS is considered.
quot(0,s(y),s(z)) | → | 0 | (1) |
quot(s(x),s(y),z) | → | quot(x,y,z) | (2) |
plus(0,y) | → | y | (3) |
plus(s(x),y) | → | s(plus(x,y)) | (4) |
quot(x,0,s(z)) | → | s(quot(x,plus(z,s(0)),s(z))) | (5) |
quot#(s(x),s(y),z) | → | quot#(x,y,z) | (6) |
plus#(s(x),y) | → | plus#(x,y) | (7) |
quot#(x,0,s(z)) | → | plus#(z,s(0)) | (8) |
quot#(x,0,s(z)) | → | quot#(x,plus(z,s(0)),s(z)) | (9) |
The dependency pairs are split into 2 components.
quot#(s(x),s(y),z) | → | quot#(x,y,z) | (6) |
quot#(x,0,s(z)) | → | quot#(x,plus(z,s(0)),s(z)) | (9) |
π(quot#) | = | 1 |
quot#(s(x),s(y),z) | → | quot#(x,y,z) | (6) |
prec(quot#) | = | 0 | stat(quot#) | = | lex | |
prec(plus) | = | 1 | stat(plus) | = | lex | |
prec(s) | = | 0 | stat(s) | = | lex | |
prec(0) | = | 3 | stat(0) | = | lex |
π(quot#) | = | [2] |
π(plus) | = | [2] |
π(s) | = | [] |
π(0) | = | [] |
plus(0,y) | → | y | (3) |
plus(s(x),y) | → | s(plus(x,y)) | (4) |
quot#(x,0,s(z)) | → | quot#(x,plus(z,s(0)),s(z)) | (9) |
There are no pairs anymore.
plus#(s(x),y) | → | plus#(x,y) | (7) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
plus#(s(x),y) | → | plus#(x,y) | (7) |
2 | ≥ | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.