The rewrite relation of the following TRS is considered.
eq(0,0) |
→ |
true |
(1) |
eq(0,s(m)) |
→ |
false |
(2) |
eq(s(n),0) |
→ |
false |
(3) |
eq(s(n),s(m)) |
→ |
eq(n,m) |
(4) |
le(0,m) |
→ |
true |
(5) |
le(s(n),0) |
→ |
false |
(6) |
le(s(n),s(m)) |
→ |
le(n,m) |
(7) |
min(cons(0,nil)) |
→ |
0 |
(8) |
min(cons(s(n),nil)) |
→ |
s(n) |
(9) |
min(cons(n,cons(m,x))) |
→ |
if_min(le(n,m),cons(n,cons(m,x))) |
(10) |
if_min(true,cons(n,cons(m,x))) |
→ |
min(cons(n,x)) |
(11) |
if_min(false,cons(n,cons(m,x))) |
→ |
min(cons(m,x)) |
(12) |
replace(n,m,nil) |
→ |
nil |
(13) |
replace(n,m,cons(k,x)) |
→ |
if_replace(eq(n,k),n,m,cons(k,x)) |
(14) |
if_replace(true,n,m,cons(k,x)) |
→ |
cons(m,x) |
(15) |
if_replace(false,n,m,cons(k,x)) |
→ |
cons(k,replace(n,m,x)) |
(16) |
sort(nil) |
→ |
nil |
(17) |
sort(cons(n,x)) |
→ |
cons(min(cons(n,x)),sort(replace(min(cons(n,x)),n,x))) |
(18) |
eq#(s(n),s(m)) |
→ |
eq#(n,m) |
(19) |
le#(s(n),s(m)) |
→ |
le#(n,m) |
(20) |
min#(cons(n,cons(m,x))) |
→ |
le#(n,m) |
(21) |
min#(cons(n,cons(m,x))) |
→ |
if_min#(le(n,m),cons(n,cons(m,x))) |
(22) |
if_min#(true,cons(n,cons(m,x))) |
→ |
min#(cons(n,x)) |
(23) |
if_min#(false,cons(n,cons(m,x))) |
→ |
min#(cons(m,x)) |
(24) |
replace#(n,m,cons(k,x)) |
→ |
eq#(n,k) |
(25) |
replace#(n,m,cons(k,x)) |
→ |
if_replace#(eq(n,k),n,m,cons(k,x)) |
(26) |
if_replace#(false,n,m,cons(k,x)) |
→ |
replace#(n,m,x) |
(27) |
sort#(cons(n,x)) |
→ |
replace#(min(cons(n,x)),n,x) |
(28) |
sort#(cons(n,x)) |
→ |
sort#(replace(min(cons(n,x)),n,x)) |
(29) |
sort#(cons(n,x)) |
→ |
min#(cons(n,x)) |
(30) |
The dependency pairs are split into 5
components.
-
The
1st
component contains the
pair
sort#(cons(n,x)) |
→ |
sort#(replace(min(cons(n,x)),n,x)) |
(29) |
1.1.1 Reduction Pair Processor with Usable Rules
Using the
prec(sort#) |
= |
0 |
|
stat(sort#) |
= |
lex
|
prec(if_replace) |
= |
0 |
|
stat(if_replace) |
= |
lex
|
prec(replace) |
= |
0 |
|
stat(replace) |
= |
lex
|
prec(if_min) |
= |
0 |
|
stat(if_min) |
= |
lex
|
prec(min) |
= |
0 |
|
stat(min) |
= |
lex
|
prec(cons) |
= |
0 |
|
stat(cons) |
= |
lex
|
prec(nil) |
= |
0 |
|
stat(nil) |
= |
lex
|
prec(le) |
= |
0 |
|
stat(le) |
= |
lex
|
prec(false) |
= |
0 |
|
stat(false) |
= |
lex
|
prec(s) |
= |
0 |
|
stat(s) |
= |
lex
|
prec(true) |
= |
0 |
|
stat(true) |
= |
lex
|
prec(eq) |
= |
0 |
|
stat(eq) |
= |
lex
|
prec(0) |
= |
0 |
|
stat(0) |
= |
lex
|
π(sort#) |
= |
1 |
π(if_replace) |
= |
4 |
π(replace) |
= |
3 |
π(if_min) |
= |
2 |
π(min) |
= |
1 |
π(cons) |
= |
[2] |
π(nil) |
= |
[] |
π(le) |
= |
2 |
π(false) |
= |
[] |
π(s) |
= |
1 |
π(true) |
= |
[] |
π(eq) |
= |
1 |
π(0) |
= |
[] |
together with the usable
rules
replace(n,m,nil) |
→ |
nil |
(13) |
replace(n,m,cons(k,x)) |
→ |
if_replace(eq(n,k),n,m,cons(k,x)) |
(14) |
if_replace(true,n,m,cons(k,x)) |
→ |
cons(m,x) |
(15) |
if_replace(false,n,m,cons(k,x)) |
→ |
cons(k,replace(n,m,x)) |
(16) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pair
sort#(cons(n,x)) |
→ |
sort#(replace(min(cons(n,x)),n,x)) |
(29) |
could be deleted.
1.1.1.1 P is empty
There are no pairs anymore.
-
The
2nd
component contains the
pair
min#(cons(n,cons(m,x))) |
→ |
if_min#(le(n,m),cons(n,cons(m,x))) |
(22) |
if_min#(true,cons(n,cons(m,x))) |
→ |
min#(cons(n,x)) |
(23) |
if_min#(false,cons(n,cons(m,x))) |
→ |
min#(cons(m,x)) |
(24) |
1.1.2 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the arctic semiring over the integers
[false] |
= |
7 |
[min#(x1)] |
= |
4 · x1 + 0 |
[s(x1)] |
= |
-∞ · x1 + 0 |
[if_min#(x1, x2)] |
= |
-∞ · x1 + 3 · x2 + 4 |
[le(x1, x2)] |
= |
0 · x1 + 0 · x2 +
-∞ |
[0] |
= |
0 |
[cons(x1, x2)] |
= |
-∞ · x1 + 1 · x2 + 2 |
[true] |
= |
7 |
having no usable rules (w.r.t. the implicit argument filter of the
reduction pair),
the
pair
min#(cons(n,cons(m,x))) |
→ |
if_min#(le(n,m),cons(n,cons(m,x))) |
(22) |
could be deleted.
1.1.2.1 Dependency Graph Processor
The dependency pairs are split into 0
components.
-
The
3rd
component contains the
pair
le#(s(n),s(m)) |
→ |
le#(n,m) |
(20) |
1.1.3 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
le#(s(n),s(m)) |
→ |
le#(n,m) |
(20) |
|
2 |
> |
2 |
1 |
> |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-
The
4th
component contains the
pair
replace#(n,m,cons(k,x)) |
→ |
if_replace#(eq(n,k),n,m,cons(k,x)) |
(26) |
if_replace#(false,n,m,cons(k,x)) |
→ |
replace#(n,m,x) |
(27) |
1.1.4 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
replace#(n,m,cons(k,x)) |
→ |
if_replace#(eq(n,k),n,m,cons(k,x)) |
(26) |
|
3 |
≥ |
4 |
2 |
≥ |
3 |
1 |
≥ |
2 |
if_replace#(false,n,m,cons(k,x)) |
→ |
replace#(n,m,x) |
(27) |
|
4 |
> |
3 |
3 |
≥ |
2 |
2 |
≥ |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
-
The
5th
component contains the
pair
eq#(s(n),s(m)) |
→ |
eq#(n,m) |
(19) |
1.1.5 Size-Change Termination
Using size-change termination in combination with
the subterm criterion
one obtains the following initial size-change graphs.
eq#(s(n),s(m)) |
→ |
eq#(n,m) |
(19) |
|
2 |
> |
2 |
1 |
> |
1 |
As there is no critical graph in the transitive closure, there are no infinite chains.