The rewrite relation of the following TRS is considered.
eq(0,0) | → | true | (1) |
eq(0,s(m)) | → | false | (2) |
eq(s(n),0) | → | false | (3) |
eq(s(n),s(m)) | → | eq(n,m) | (4) |
le(0,m) | → | true | (5) |
le(s(n),0) | → | false | (6) |
le(s(n),s(m)) | → | le(n,m) | (7) |
min(cons(0,nil)) | → | 0 | (8) |
min(cons(s(n),nil)) | → | s(n) | (9) |
min(cons(n,cons(m,x))) | → | if_min(le(n,m),cons(n,cons(m,x))) | (10) |
if_min(true,cons(n,cons(m,x))) | → | min(cons(n,x)) | (11) |
if_min(false,cons(n,cons(m,x))) | → | min(cons(m,x)) | (12) |
replace(n,m,nil) | → | nil | (13) |
replace(n,m,cons(k,x)) | → | if_replace(eq(n,k),n,m,cons(k,x)) | (14) |
if_replace(true,n,m,cons(k,x)) | → | cons(m,x) | (15) |
if_replace(false,n,m,cons(k,x)) | → | cons(k,replace(n,m,x)) | (16) |
sort(nil) | → | nil | (17) |
sort(cons(n,x)) | → | cons(min(cons(n,x)),sort(replace(min(cons(n,x)),n,x))) | (18) |
eq#(s(n),s(m)) | → | eq#(n,m) | (19) |
le#(s(n),s(m)) | → | le#(n,m) | (20) |
min#(cons(n,cons(m,x))) | → | le#(n,m) | (21) |
min#(cons(n,cons(m,x))) | → | if_min#(le(n,m),cons(n,cons(m,x))) | (22) |
if_min#(true,cons(n,cons(m,x))) | → | min#(cons(n,x)) | (23) |
if_min#(false,cons(n,cons(m,x))) | → | min#(cons(m,x)) | (24) |
replace#(n,m,cons(k,x)) | → | eq#(n,k) | (25) |
replace#(n,m,cons(k,x)) | → | if_replace#(eq(n,k),n,m,cons(k,x)) | (26) |
if_replace#(false,n,m,cons(k,x)) | → | replace#(n,m,x) | (27) |
sort#(cons(n,x)) | → | replace#(min(cons(n,x)),n,x) | (28) |
sort#(cons(n,x)) | → | sort#(replace(min(cons(n,x)),n,x)) | (29) |
sort#(cons(n,x)) | → | min#(cons(n,x)) | (30) |
The dependency pairs are split into 5 components.
sort#(cons(n,x)) | → | sort#(replace(min(cons(n,x)),n,x)) | (29) |
prec(sort#) | = | 0 | stat(sort#) | = | lex | |
prec(if_replace) | = | 0 | stat(if_replace) | = | lex | |
prec(replace) | = | 0 | stat(replace) | = | lex | |
prec(if_min) | = | 0 | stat(if_min) | = | lex | |
prec(min) | = | 0 | stat(min) | = | lex | |
prec(cons) | = | 0 | stat(cons) | = | lex | |
prec(nil) | = | 0 | stat(nil) | = | lex | |
prec(le) | = | 0 | stat(le) | = | lex | |
prec(false) | = | 0 | stat(false) | = | lex | |
prec(s) | = | 0 | stat(s) | = | lex | |
prec(true) | = | 0 | stat(true) | = | lex | |
prec(eq) | = | 0 | stat(eq) | = | lex | |
prec(0) | = | 0 | stat(0) | = | lex |
π(sort#) | = | 1 |
π(if_replace) | = | 4 |
π(replace) | = | 3 |
π(if_min) | = | 2 |
π(min) | = | 1 |
π(cons) | = | [2] |
π(nil) | = | [] |
π(le) | = | 2 |
π(false) | = | [] |
π(s) | = | 1 |
π(true) | = | [] |
π(eq) | = | 1 |
π(0) | = | [] |
replace(n,m,nil) | → | nil | (13) |
replace(n,m,cons(k,x)) | → | if_replace(eq(n,k),n,m,cons(k,x)) | (14) |
if_replace(true,n,m,cons(k,x)) | → | cons(m,x) | (15) |
if_replace(false,n,m,cons(k,x)) | → | cons(k,replace(n,m,x)) | (16) |
sort#(cons(n,x)) | → | sort#(replace(min(cons(n,x)),n,x)) | (29) |
There are no pairs anymore.
min#(cons(n,cons(m,x))) | → | if_min#(le(n,m),cons(n,cons(m,x))) | (22) |
if_min#(true,cons(n,cons(m,x))) | → | min#(cons(n,x)) | (23) |
if_min#(false,cons(n,cons(m,x))) | → | min#(cons(m,x)) | (24) |
[false] | = | 7 |
[min#(x1)] | = | 4 · x1 + 0 |
[s(x1)] | = | -∞ · x1 + 0 |
[if_min#(x1, x2)] | = | -∞ · x1 + 3 · x2 + 4 |
[le(x1, x2)] | = | 0 · x1 + 0 · x2 + -∞ |
[0] | = | 0 |
[cons(x1, x2)] | = | -∞ · x1 + 1 · x2 + 2 |
[true] | = | 7 |
min#(cons(n,cons(m,x))) | → | if_min#(le(n,m),cons(n,cons(m,x))) | (22) |
The dependency pairs are split into 0 components.
le#(s(n),s(m)) | → | le#(n,m) | (20) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
le#(s(n),s(m)) | → | le#(n,m) | (20) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
replace#(n,m,cons(k,x)) | → | if_replace#(eq(n,k),n,m,cons(k,x)) | (26) |
if_replace#(false,n,m,cons(k,x)) | → | replace#(n,m,x) | (27) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
replace#(n,m,cons(k,x)) | → | if_replace#(eq(n,k),n,m,cons(k,x)) | (26) |
3 | ≥ | 4 | |
2 | ≥ | 3 | |
1 | ≥ | 2 | |
if_replace#(false,n,m,cons(k,x)) | → | replace#(n,m,x) | (27) |
4 | > | 3 | |
3 | ≥ | 2 | |
2 | ≥ | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
eq#(s(n),s(m)) | → | eq#(n,m) | (19) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
eq#(s(n),s(m)) | → | eq#(n,m) | (19) |
2 | > | 2 | |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.