The rewrite relation of the following TRS is considered.
f(x,y) | → | g1(x,x,y) | (1) |
f(x,y) | → | g1(y,x,x) | (2) |
f(x,y) | → | g2(x,y,y) | (3) |
f(x,y) | → | g2(y,y,x) | (4) |
g1(x,x,y) | → | h(x,y) | (5) |
g1(y,x,x) | → | h(x,y) | (6) |
g2(x,y,y) | → | h(x,y) | (7) |
g2(y,y,x) | → | h(x,y) | (8) |
h(x,x) | → | x | (9) |
[g1(x1, x2, x3)] | = |
|
||||||||||||||||||||||||||||
[h(x1, x2)] | = |
|
||||||||||||||||||||||||||||
[f(x1, x2)] | = |
|
||||||||||||||||||||||||||||
[g2(x1, x2, x3)] | = |
|
g1(x,x,y) | → | h(x,y) | (5) |
g1(y,x,x) | → | h(x,y) | (6) |
g2(x,y,y) | → | h(x,y) | (7) |
g2(y,y,x) | → | h(x,y) | (8) |
prec(h) | = | 0 | status(h) | = | [2, 1] | list-extension(h) | = | Lex | ||
prec(g2) | = | 0 | status(g2) | = | [1, 2, 3] | list-extension(g2) | = | Lex | ||
prec(g1) | = | 0 | status(g1) | = | [1, 3, 2] | list-extension(g1) | = | Lex | ||
prec(f) | = | 1 | status(f) | = | [2, 1] | list-extension(f) | = | Lex |
[h(x1, x2)] | = | max(0, 1 + 1 · x1, 0 + 1 · x2) |
[g2(x1, x2, x3)] | = | max(0, 0 + 1 · x1, 0 + 1 · x2, 0 + 1 · x3) |
[g1(x1, x2, x3)] | = | max(0, 0 + 1 · x1, 0 + 1 · x2, 0 + 1 · x3) |
[f(x1, x2)] | = | max(4, 0 + 1 · x1, 0 + 1 · x2) |
f(x,y) | → | g1(x,x,y) | (1) |
f(x,y) | → | g1(y,x,x) | (2) |
f(x,y) | → | g2(x,y,y) | (3) |
f(x,y) | → | g2(y,y,x) | (4) |
h(x,x) | → | x | (9) |
There are no rules in the TRS. Hence, it is terminating.