YES(O(1),O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { not(true()) -> false() , not(false()) -> true() , evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We add the following innermost weak dependency pairs: Strict DPs: { not^#(true()) -> c_1() , not^#(false()) -> c_2() , evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0())))) , evenodd^#(0(), s(0())) -> c_4() , evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { not^#(true()) -> c_1() , not^#(false()) -> c_2() , evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0())))) , evenodd^#(0(), s(0())) -> c_4() , evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) } Strict Trs: { not(true()) -> false() , not(false()) -> true() , evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following constant growth matrix-interpretation) The following argument positions are usable: Uargs(not) = {1}, Uargs(not^#) = {1}, Uargs(c_3) = {1}, Uargs(c_5) = {1} TcT has computed the following constructor-restricted matrix interpretation. [not](x1) = [1 1] x1 + [0] [0 0] [1] [true] = [0] [1] [false] = [0] [1] [evenodd](x1, x2) = [2 1] x1 + [0 2] x2 + [0] [0 0] [0 0] [1] [0] = [0] [1] [s](x1) = [1 1] x1 + [2] [0 0] [0] [not^#](x1) = [1 0] x1 + [0] [0 0] [0] [c_1] = [1] [0] [c_2] = [1] [0] [evenodd^#](x1, x2) = [2 1] x1 + [0] [0 0] [0] [c_3](x1) = [1 0] x1 + [2] [0 1] [2] [c_4] = [0] [0] [c_5](x1) = [1 0] x1 + [2] [0 1] [2] The following symbols are considered usable {not, evenodd, not^#, evenodd^#} The order satisfies the following ordering constraints: [not(true())] = [1] [1] > [0] [1] = [false()] [not(false())] = [1] [1] > [0] [1] = [true()] [evenodd(x, 0())] = [2 1] x + [2] [0 0] [1] > [2 1] x + [1] [0 0] [1] = [not(evenodd(x, s(0())))] [evenodd(0(), s(0()))] = [1] [1] > [0] [1] = [false()] [evenodd(s(x), s(0()))] = [2 2] x + [4] [0 0] [1] > [2 1] x + [2] [0 0] [1] = [evenodd(x, 0())] [not^#(true())] = [0] [0] ? [1] [0] = [c_1()] [not^#(false())] = [0] [0] ? [1] [0] = [c_2()] [evenodd^#(x, 0())] = [2 1] x + [0] [0 0] [0] ? [2 1] x + [2] [0 0] [2] = [c_3(not^#(evenodd(x, s(0()))))] [evenodd^#(0(), s(0()))] = [1] [0] > [0] [0] = [c_4()] [evenodd^#(s(x), s(0()))] = [2 2] x + [4] [0 0] [0] ? [2 1] x + [2] [0 0] [2] = [c_5(evenodd^#(x, 0()))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { not^#(true()) -> c_1() , not^#(false()) -> c_2() , evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0())))) , evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) } Weak DPs: { evenodd^#(0(), s(0())) -> c_4() } Weak Trs: { not(true()) -> false() , not(false()) -> true() , evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We estimate the number of application of {1,2} by applications of Pre({1,2}) = {3}. Here rules are labeled as follows: DPs: { 1: not^#(true()) -> c_1() , 2: not^#(false()) -> c_2() , 3: evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0())))) , 4: evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) , 5: evenodd^#(0(), s(0())) -> c_4() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0())))) , evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) } Weak DPs: { not^#(true()) -> c_1() , not^#(false()) -> c_2() , evenodd^#(0(), s(0())) -> c_4() } Weak Trs: { not(true()) -> false() , not(false()) -> true() , evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We estimate the number of application of {1} by applications of Pre({1}) = {2}. Here rules are labeled as follows: DPs: { 1: evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0())))) , 2: evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) , 3: not^#(true()) -> c_1() , 4: not^#(false()) -> c_2() , 5: evenodd^#(0(), s(0())) -> c_4() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) } Weak DPs: { not^#(true()) -> c_1() , not^#(false()) -> c_2() , evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0())))) , evenodd^#(0(), s(0())) -> c_4() } Weak Trs: { not(true()) -> false() , not(false()) -> true() , evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We estimate the number of application of {1} by applications of Pre({1}) = {}. Here rules are labeled as follows: DPs: { 1: evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) , 2: not^#(true()) -> c_1() , 3: not^#(false()) -> c_2() , 4: evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0())))) , 5: evenodd^#(0(), s(0())) -> c_4() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { not^#(true()) -> c_1() , not^#(false()) -> c_2() , evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0())))) , evenodd^#(0(), s(0())) -> c_4() , evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) } Weak Trs: { not(true()) -> false() , not(false()) -> true() , evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { not^#(true()) -> c_1() , not^#(false()) -> c_2() , evenodd^#(x, 0()) -> c_3(not^#(evenodd(x, s(0())))) , evenodd^#(0(), s(0())) -> c_4() , evenodd^#(s(x), s(0())) -> c_5(evenodd^#(x, 0())) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { not(true()) -> false() , not(false()) -> true() , evenodd(x, 0()) -> not(evenodd(x, s(0()))) , evenodd(0(), s(0())) -> false() , evenodd(s(x), s(0())) -> evenodd(x, 0()) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^1))