YES(O(1),O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(f(n__a()))) , a() -> n__a() , g(X) -> n__g(X) , activate(X) -> X , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We add the following innermost weak dependency pairs: Strict DPs: { f^#(X) -> c_1() , f^#(n__f(n__a())) -> c_2(f^#(n__g(f(n__a())))) , a^#() -> c_3() , g^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__f(X)) -> c_6(f^#(X)) , activate^#(n__a()) -> c_7(a^#()) , activate^#(n__g(X)) -> c_8(g^#(X)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f^#(X) -> c_1() , f^#(n__f(n__a())) -> c_2(f^#(n__g(f(n__a())))) , a^#() -> c_3() , g^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__f(X)) -> c_6(f^#(X)) , activate^#(n__a()) -> c_7(a^#()) , activate^#(n__g(X)) -> c_8(g^#(X)) } Strict Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(f(n__a()))) , a() -> n__a() , g(X) -> n__g(X) , activate(X) -> X , activate(n__f(X)) -> f(X) , activate(n__a()) -> a() , activate(n__g(X)) -> g(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We replace rewrite rules by usable rules: Strict Usable Rules: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(f(n__a()))) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f^#(X) -> c_1() , f^#(n__f(n__a())) -> c_2(f^#(n__g(f(n__a())))) , a^#() -> c_3() , g^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__f(X)) -> c_6(f^#(X)) , activate^#(n__a()) -> c_7(a^#()) , activate^#(n__g(X)) -> c_8(g^#(X)) } Strict Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(f(n__a()))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following constant growth matrix-interpretation) The following argument positions are usable: Uargs(f) = {1}, Uargs(n__g) = {1}, Uargs(f^#) = {1}, Uargs(c_2) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1}, Uargs(c_8) = {1} TcT has computed the following constructor-restricted matrix interpretation. [f](x1) = [1 2] x1 + [1] [0 0] [2] [n__f](x1) = [1 0] x1 + [0] [0 0] [2] [n__a] = [0] [0] [n__g](x1) = [1 0] x1 + [0] [0 0] [0] [f^#](x1) = [2 0] x1 + [2] [0 0] [2] [c_1] = [1] [1] [c_2](x1) = [1 0] x1 + [2] [0 1] [2] [a^#] = [1] [1] [c_3] = [1] [1] [g^#](x1) = [1 0] x1 + [1] [2 1] [1] [c_4] = [1] [1] [activate^#](x1) = [2 0] x1 + [0] [0 0] [0] [c_5] = [1] [1] [c_6](x1) = [1 0] x1 + [1] [0 1] [1] [c_7](x1) = [1 0] x1 + [2] [0 1] [2] [c_8](x1) = [1 0] x1 + [2] [0 1] [2] The following symbols are considered usable {f, f^#, a^#, g^#, activate^#} The order satisfies the following ordering constraints: [f(X)] = [1 2] X + [1] [0 0] [2] > [1 0] X + [0] [0 0] [2] = [n__f(X)] [f(n__f(n__a()))] = [5] [2] > [2] [2] = [f(n__g(f(n__a())))] [f^#(X)] = [2 0] X + [2] [0 0] [2] > [1] [1] = [c_1()] [f^#(n__f(n__a()))] = [2] [2] ? [6] [4] = [c_2(f^#(n__g(f(n__a()))))] [a^#()] = [1] [1] >= [1] [1] = [c_3()] [g^#(X)] = [1 0] X + [1] [2 1] [1] >= [1] [1] = [c_4()] [activate^#(X)] = [2 0] X + [0] [0 0] [0] ? [1] [1] = [c_5()] [activate^#(n__f(X))] = [2 0] X + [0] [0 0] [0] ? [2 0] X + [3] [0 0] [3] = [c_6(f^#(X))] [activate^#(n__a())] = [0] [0] ? [3] [3] = [c_7(a^#())] [activate^#(n__g(X))] = [2 0] X + [0] [0 0] [0] ? [1 0] X + [3] [2 1] [3] = [c_8(g^#(X))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { f^#(n__f(n__a())) -> c_2(f^#(n__g(f(n__a())))) , a^#() -> c_3() , g^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__f(X)) -> c_6(f^#(X)) , activate^#(n__a()) -> c_7(a^#()) , activate^#(n__g(X)) -> c_8(g^#(X)) } Weak DPs: { f^#(X) -> c_1() } Weak Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(f(n__a()))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We estimate the number of application of {1,2,3,4} by applications of Pre({1,2,3,4}) = {5,6,7}. Here rules are labeled as follows: DPs: { 1: f^#(n__f(n__a())) -> c_2(f^#(n__g(f(n__a())))) , 2: a^#() -> c_3() , 3: g^#(X) -> c_4() , 4: activate^#(X) -> c_5() , 5: activate^#(n__f(X)) -> c_6(f^#(X)) , 6: activate^#(n__a()) -> c_7(a^#()) , 7: activate^#(n__g(X)) -> c_8(g^#(X)) , 8: f^#(X) -> c_1() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { activate^#(n__f(X)) -> c_6(f^#(X)) , activate^#(n__a()) -> c_7(a^#()) , activate^#(n__g(X)) -> c_8(g^#(X)) } Weak DPs: { f^#(X) -> c_1() , f^#(n__f(n__a())) -> c_2(f^#(n__g(f(n__a())))) , a^#() -> c_3() , g^#(X) -> c_4() , activate^#(X) -> c_5() } Weak Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(f(n__a()))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We estimate the number of application of {1,2,3} by applications of Pre({1,2,3}) = {}. Here rules are labeled as follows: DPs: { 1: activate^#(n__f(X)) -> c_6(f^#(X)) , 2: activate^#(n__a()) -> c_7(a^#()) , 3: activate^#(n__g(X)) -> c_8(g^#(X)) , 4: f^#(X) -> c_1() , 5: f^#(n__f(n__a())) -> c_2(f^#(n__g(f(n__a())))) , 6: a^#() -> c_3() , 7: g^#(X) -> c_4() , 8: activate^#(X) -> c_5() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { f^#(X) -> c_1() , f^#(n__f(n__a())) -> c_2(f^#(n__g(f(n__a())))) , a^#() -> c_3() , g^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__f(X)) -> c_6(f^#(X)) , activate^#(n__a()) -> c_7(a^#()) , activate^#(n__g(X)) -> c_8(g^#(X)) } Weak Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(f(n__a()))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f^#(X) -> c_1() , f^#(n__f(n__a())) -> c_2(f^#(n__g(f(n__a())))) , a^#() -> c_3() , g^#(X) -> c_4() , activate^#(X) -> c_5() , activate^#(n__f(X)) -> c_6(f^#(X)) , activate^#(n__a()) -> c_7(a^#()) , activate^#(n__g(X)) -> c_8(g^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { f(X) -> n__f(X) , f(n__f(n__a())) -> f(n__g(f(n__a()))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^1))