YES(O(1),O(n^1)) We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { 2nd(cons1(X, cons(Y, Z))) -> Y , 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We add the following innermost weak dependency pairs: Strict DPs: { 2nd^#(cons1(X, cons(Y, Z))) -> c_1() , 2nd^#(cons(X, X1)) -> c_2(2nd^#(cons1(X, activate(X1)))) , activate^#(X) -> c_3() , activate^#(n__from(X)) -> c_4(from^#(activate(X))) , activate^#(n__s(X)) -> c_5(s^#(activate(X))) , from^#(X) -> c_6() , from^#(X) -> c_7() , s^#(X) -> c_8() } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { 2nd^#(cons1(X, cons(Y, Z))) -> c_1() , 2nd^#(cons(X, X1)) -> c_2(2nd^#(cons1(X, activate(X1)))) , activate^#(X) -> c_3() , activate^#(n__from(X)) -> c_4(from^#(activate(X))) , activate^#(n__s(X)) -> c_5(s^#(activate(X))) , from^#(X) -> c_6() , from^#(X) -> c_7() , s^#(X) -> c_8() } Strict Trs: { 2nd(cons1(X, cons(Y, Z))) -> Y , 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) , activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) We replace rewrite rules by usable rules: Strict Usable Rules: { activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { 2nd^#(cons1(X, cons(Y, Z))) -> c_1() , 2nd^#(cons(X, X1)) -> c_2(2nd^#(cons1(X, activate(X1)))) , activate^#(X) -> c_3() , activate^#(n__from(X)) -> c_4(from^#(activate(X))) , activate^#(n__s(X)) -> c_5(s^#(activate(X))) , from^#(X) -> c_6() , from^#(X) -> c_7() , s^#(X) -> c_8() } Strict Trs: { activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following constant growth matrix-interpretation) The following argument positions are usable: Uargs(cons1) = {2}, Uargs(from) = {1}, Uargs(s) = {1}, Uargs(2nd^#) = {1}, Uargs(c_2) = {1}, Uargs(c_4) = {1}, Uargs(from^#) = {1}, Uargs(c_5) = {1}, Uargs(s^#) = {1} TcT has computed the following constructor-restricted matrix interpretation. [cons1](x1, x2) = [1 0] x2 + [0] [0 0] [0] [cons](x1, x2) = [1 0] x2 + [0] [0 1] [0] [activate](x1) = [1 2] x1 + [1] [0 2] [0] [from](x1) = [1 0] x1 + [1] [0 1] [2] [n__from](x1) = [1 0] x1 + [0] [0 1] [1] [n__s](x1) = [1 0] x1 + [0] [0 1] [1] [s](x1) = [1 0] x1 + [1] [0 1] [1] [2nd^#](x1) = [1 2] x1 + [0] [0 0] [0] [c_1] = [1] [1] [c_2](x1) = [1 0] x1 + [1] [0 1] [2] [activate^#](x1) = [1 2] x1 + [2] [1 2] [2] [c_3] = [1] [1] [c_4](x1) = [1 0] x1 + [2] [0 1] [2] [from^#](x1) = [1 0] x1 + [1] [0 0] [2] [c_5](x1) = [1 0] x1 + [2] [0 1] [2] [s^#](x1) = [1 0] x1 + [1] [0 0] [2] [c_6] = [1] [1] [c_7] = [1] [1] [c_8] = [1] [1] The following symbols are considered usable {activate, from, s, 2nd^#, activate^#, from^#, s^#} The order satisfies the following ordering constraints: [activate(X)] = [1 2] X + [1] [0 2] [0] > [1 0] X + [0] [0 1] [0] = [X] [activate(n__from(X))] = [1 2] X + [3] [0 2] [2] > [1 2] X + [2] [0 2] [2] = [from(activate(X))] [activate(n__s(X))] = [1 2] X + [3] [0 2] [2] > [1 2] X + [2] [0 2] [1] = [s(activate(X))] [from(X)] = [1 0] X + [1] [0 1] [2] > [1 0] X + [0] [0 1] [2] = [cons(X, n__from(n__s(X)))] [from(X)] = [1 0] X + [1] [0 1] [2] > [1 0] X + [0] [0 1] [1] = [n__from(X)] [s(X)] = [1 0] X + [1] [0 1] [1] > [1 0] X + [0] [0 1] [1] = [n__s(X)] [2nd^#(cons1(X, cons(Y, Z)))] = [1 0] Z + [0] [0 0] [0] ? [1] [1] = [c_1()] [2nd^#(cons(X, X1))] = [1 2] X1 + [0] [0 0] [0] ? [1 2] X1 + [2] [0 0] [2] = [c_2(2nd^#(cons1(X, activate(X1))))] [activate^#(X)] = [1 2] X + [2] [1 2] [2] > [1] [1] = [c_3()] [activate^#(n__from(X))] = [1 2] X + [4] [1 2] [4] >= [1 2] X + [4] [0 0] [4] = [c_4(from^#(activate(X)))] [activate^#(n__s(X))] = [1 2] X + [4] [1 2] [4] >= [1 2] X + [4] [0 0] [4] = [c_5(s^#(activate(X)))] [from^#(X)] = [1 0] X + [1] [0 0] [2] >= [1] [1] = [c_6()] [from^#(X)] = [1 0] X + [1] [0 0] [2] >= [1] [1] = [c_7()] [s^#(X)] = [1 0] X + [1] [0 0] [2] >= [1] [1] = [c_8()] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { 2nd^#(cons1(X, cons(Y, Z))) -> c_1() , 2nd^#(cons(X, X1)) -> c_2(2nd^#(cons1(X, activate(X1)))) , activate^#(n__from(X)) -> c_4(from^#(activate(X))) , activate^#(n__s(X)) -> c_5(s^#(activate(X))) , from^#(X) -> c_6() , from^#(X) -> c_7() , s^#(X) -> c_8() } Weak DPs: { activate^#(X) -> c_3() } Weak Trs: { activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We estimate the number of application of {1,5,6,7} by applications of Pre({1,5,6,7}) = {2,3,4}. Here rules are labeled as follows: DPs: { 1: 2nd^#(cons1(X, cons(Y, Z))) -> c_1() , 2: 2nd^#(cons(X, X1)) -> c_2(2nd^#(cons1(X, activate(X1)))) , 3: activate^#(n__from(X)) -> c_4(from^#(activate(X))) , 4: activate^#(n__s(X)) -> c_5(s^#(activate(X))) , 5: from^#(X) -> c_6() , 6: from^#(X) -> c_7() , 7: s^#(X) -> c_8() , 8: activate^#(X) -> c_3() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { 2nd^#(cons(X, X1)) -> c_2(2nd^#(cons1(X, activate(X1)))) , activate^#(n__from(X)) -> c_4(from^#(activate(X))) , activate^#(n__s(X)) -> c_5(s^#(activate(X))) } Weak DPs: { 2nd^#(cons1(X, cons(Y, Z))) -> c_1() , activate^#(X) -> c_3() , from^#(X) -> c_6() , from^#(X) -> c_7() , s^#(X) -> c_8() } Weak Trs: { activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We estimate the number of application of {1,2,3} by applications of Pre({1,2,3}) = {}. Here rules are labeled as follows: DPs: { 1: 2nd^#(cons(X, X1)) -> c_2(2nd^#(cons1(X, activate(X1)))) , 2: activate^#(n__from(X)) -> c_4(from^#(activate(X))) , 3: activate^#(n__s(X)) -> c_5(s^#(activate(X))) , 4: 2nd^#(cons1(X, cons(Y, Z))) -> c_1() , 5: activate^#(X) -> c_3() , 6: from^#(X) -> c_6() , 7: from^#(X) -> c_7() , 8: s^#(X) -> c_8() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { 2nd^#(cons1(X, cons(Y, Z))) -> c_1() , 2nd^#(cons(X, X1)) -> c_2(2nd^#(cons1(X, activate(X1)))) , activate^#(X) -> c_3() , activate^#(n__from(X)) -> c_4(from^#(activate(X))) , activate^#(n__s(X)) -> c_5(s^#(activate(X))) , from^#(X) -> c_6() , from^#(X) -> c_7() , s^#(X) -> c_8() } Weak Trs: { activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { 2nd^#(cons1(X, cons(Y, Z))) -> c_1() , 2nd^#(cons(X, X1)) -> c_2(2nd^#(cons1(X, activate(X1)))) , activate^#(X) -> c_3() , activate^#(n__from(X)) -> c_4(from^#(activate(X))) , activate^#(n__s(X)) -> c_5(s^#(activate(X))) , from^#(X) -> c_6() , from^#(X) -> c_7() , s^#(X) -> c_8() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { activate(X) -> X , activate(n__from(X)) -> from(activate(X)) , activate(n__s(X)) -> s(activate(X)) , from(X) -> cons(X, n__from(n__s(X))) , from(X) -> n__from(X) , s(X) -> n__s(X) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^1))