YES(O(1),O(n^1))

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { primes() -> sieve(from(s(s(0()))))
  , sieve(X) -> n__sieve(X)
  , sieve(cons(X, Y)) -> cons(X, n__filter(X, n__sieve(activate(Y))))
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , cons(X1, X2) -> n__cons(X1, X2)
  , head(cons(X, Y)) -> X
  , tail(cons(X, Y)) -> activate(Y)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
  , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
  , activate(n__sieve(X)) -> sieve(activate(X))
  , if(true(), X, Y) -> activate(X)
  , if(false(), X, Y) -> activate(Y)
  , filter(X1, X2) -> n__filter(X1, X2)
  , filter(s(s(X)), cons(Y, Z)) ->
    if(divides(s(s(X)), Y),
       n__filter(n__s(n__s(X)), activate(Z)),
       n__cons(Y, n__filter(X, n__sieve(Y)))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

Arguments of following rules are not normal-forms:

{ sieve(cons(X, Y)) -> cons(X, n__filter(X, n__sieve(activate(Y))))
, head(cons(X, Y)) -> X
, tail(cons(X, Y)) -> activate(Y)
, filter(s(s(X)), cons(Y, Z)) ->
  if(divides(s(s(X)), Y),
     n__filter(n__s(n__s(X)), activate(Z)),
     n__cons(Y, n__filter(X, n__sieve(Y)))) }

All above mentioned rules can be savely removed.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict Trs:
  { primes() -> sieve(from(s(s(0()))))
  , sieve(X) -> n__sieve(X)
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , cons(X1, X2) -> n__cons(X1, X2)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
  , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
  , activate(n__sieve(X)) -> sieve(activate(X))
  , if(true(), X, Y) -> activate(X)
  , if(false(), X, Y) -> activate(Y)
  , filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We add the following innermost weak dependency pairs:

Strict DPs:
  { primes^#() -> c_1(sieve^#(from(s(s(0())))))
  , sieve^#(X) -> c_2()
  , from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
  , from^#(X) -> c_4()
  , cons^#(X1, X2) -> c_6()
  , s^#(X) -> c_5()
  , activate^#(X) -> c_7()
  , activate^#(n__from(X)) -> c_8(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)))
  , activate^#(n__filter(X1, X2)) ->
    c_10(filter^#(activate(X1), activate(X2)))
  , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2))
  , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)))
  , filter^#(X1, X2) -> c_15()
  , if^#(true(), X, Y) -> c_13(activate^#(X))
  , if^#(false(), X, Y) -> c_14(activate^#(Y)) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { primes^#() -> c_1(sieve^#(from(s(s(0())))))
  , sieve^#(X) -> c_2()
  , from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
  , from^#(X) -> c_4()
  , cons^#(X1, X2) -> c_6()
  , s^#(X) -> c_5()
  , activate^#(X) -> c_7()
  , activate^#(n__from(X)) -> c_8(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)))
  , activate^#(n__filter(X1, X2)) ->
    c_10(filter^#(activate(X1), activate(X2)))
  , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2))
  , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)))
  , filter^#(X1, X2) -> c_15()
  , if^#(true(), X, Y) -> c_13(activate^#(X))
  , if^#(false(), X, Y) -> c_14(activate^#(Y)) }
Strict Trs:
  { primes() -> sieve(from(s(s(0()))))
  , sieve(X) -> n__sieve(X)
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , cons(X1, X2) -> n__cons(X1, X2)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
  , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
  , activate(n__sieve(X)) -> sieve(activate(X))
  , if(true(), X, Y) -> activate(X)
  , if(false(), X, Y) -> activate(Y)
  , filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

We replace rewrite rules by usable rules:

  Strict Usable Rules:
    { sieve(X) -> n__sieve(X)
    , from(X) -> cons(X, n__from(n__s(X)))
    , from(X) -> n__from(X)
    , s(X) -> n__s(X)
    , cons(X1, X2) -> n__cons(X1, X2)
    , activate(X) -> X
    , activate(n__from(X)) -> from(activate(X))
    , activate(n__s(X)) -> s(activate(X))
    , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
    , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
    , activate(n__sieve(X)) -> sieve(activate(X))
    , filter(X1, X2) -> n__filter(X1, X2) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(n^1)).

Strict DPs:
  { primes^#() -> c_1(sieve^#(from(s(s(0())))))
  , sieve^#(X) -> c_2()
  , from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
  , from^#(X) -> c_4()
  , cons^#(X1, X2) -> c_6()
  , s^#(X) -> c_5()
  , activate^#(X) -> c_7()
  , activate^#(n__from(X)) -> c_8(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)))
  , activate^#(n__filter(X1, X2)) ->
    c_10(filter^#(activate(X1), activate(X2)))
  , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2))
  , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)))
  , filter^#(X1, X2) -> c_15()
  , if^#(true(), X, Y) -> c_13(activate^#(X))
  , if^#(false(), X, Y) -> c_14(activate^#(Y)) }
Strict Trs:
  { sieve(X) -> n__sieve(X)
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , cons(X1, X2) -> n__cons(X1, X2)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
  , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
  , activate(n__sieve(X)) -> sieve(activate(X))
  , filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(n^1))

The weightgap principle applies (using the following constant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(sieve) = {1}, Uargs(from) = {1}, Uargs(s) = {1},
  Uargs(cons) = {1}, Uargs(filter) = {1, 2}, Uargs(c_1) = {1},
  Uargs(sieve^#) = {1}, Uargs(from^#) = {1}, Uargs(c_3) = {1},
  Uargs(cons^#) = {1}, Uargs(s^#) = {1}, Uargs(c_8) = {1},
  Uargs(c_9) = {1}, Uargs(c_10) = {1}, Uargs(filter^#) = {1, 2},
  Uargs(c_11) = {1}, Uargs(c_12) = {1}, Uargs(c_13) = {1},
  Uargs(c_14) = {1}

TcT has computed the following constructor-restricted matrix
interpretation.

          [sieve](x1) = [1 0] x1 + [2]                      
                        [0 1]      [2]                      
                                                            
           [from](x1) = [1 0] x1 + [2]                      
                        [0 1]      [2]                      
                                                            
              [s](x1) = [1 0] x1 + [1]                      
                        [0 1]      [1]                      
                                                            
                  [0] = [0]                                 
                        [0]                                 
                                                            
       [cons](x1, x2) = [1 0] x1 + [1]                      
                        [0 1]      [2]                      
                                                            
        [n__from](x1) = [1 0] x1 + [0]                      
                        [0 1]      [2]                      
                                                            
           [n__s](x1) = [1 0] x1 + [0]                      
                        [0 1]      [1]                      
                                                            
       [activate](x1) = [1 2] x1 + [1]                      
                        [0 2]      [0]                      
                                                            
               [true] = [1]                                 
                        [2]                                 
                                                            
              [false] = [1]                                 
                        [1]                                 
                                                            
     [filter](x1, x2) = [1 0] x1 + [1 0] x2 + [1]           
                        [0 1]      [0 1]      [2]           
                                                            
  [n__filter](x1, x2) = [1 0] x1 + [1 0] x2 + [0]           
                        [0 1]      [0 1]      [2]           
                                                            
    [n__cons](x1, x2) = [1 0] x1 + [0]                      
                        [0 1]      [2]                      
                                                            
       [n__sieve](x1) = [1 0] x1 + [0]                      
                        [0 1]      [2]                      
                                                            
           [primes^#] = [1]                                 
                        [1]                                 
                                                            
            [c_1](x1) = [1 0] x1 + [1]                      
                        [0 1]      [2]                      
                                                            
        [sieve^#](x1) = [1 0] x1 + [1]                      
                        [0 0]      [2]                      
                                                            
                [c_2] = [1]                                 
                        [1]                                 
                                                            
         [from^#](x1) = [1 0] x1 + [1]                      
                        [0 0]      [2]                      
                                                            
            [c_3](x1) = [1 0] x1 + [1]                      
                        [0 1]      [2]                      
                                                            
     [cons^#](x1, x2) = [1 0] x1 + [1]                      
                        [0 0]      [2]                      
                                                            
                [c_4] = [1]                                 
                        [1]                                 
                                                            
            [s^#](x1) = [1 0] x1 + [1]                      
                        [0 0]      [2]                      
                                                            
                [c_5] = [1]                                 
                        [1]                                 
                                                            
                [c_6] = [1]                                 
                        [1]                                 
                                                            
     [activate^#](x1) = [1 2] x1 + [0]                      
                        [0 0]      [0]                      
                                                            
                [c_7] = [1]                                 
                        [1]                                 
                                                            
            [c_8](x1) = [1 0] x1 + [2]                      
                        [0 1]      [2]                      
                                                            
            [c_9](x1) = [1 0] x1 + [2]                      
                        [0 1]      [2]                      
                                                            
           [c_10](x1) = [1 0] x1 + [2]                      
                        [0 1]      [2]                      
                                                            
   [filter^#](x1, x2) = [1 0] x1 + [1 0] x2 + [2]           
                        [0 0]      [0 0]      [2]           
                                                            
           [c_11](x1) = [1 0] x1 + [2]                      
                        [0 1]      [2]                      
                                                            
           [c_12](x1) = [1 0] x1 + [2]                      
                        [0 1]      [2]                      
                                                            
   [if^#](x1, x2, x3) = [1 1] x1 + [1 2] x2 + [1 2] x3 + [1]
                        [1 1]      [2 2]      [1 1]      [1]
                                                            
           [c_13](x1) = [1 0] x1 + [2]                      
                        [0 1]      [2]                      
                                                            
           [c_14](x1) = [1 0] x1 + [2]                      
                        [0 1]      [2]                      
                                                            
               [c_15] = [2]                                 
                        [1]                                 

The following symbols are considered usable

  {sieve, from, s, cons, activate, filter, primes^#, sieve^#, from^#,
   cons^#, s^#, activate^#, filter^#, if^#}

The order satisfies the following ordering constraints:

                       [sieve(X)] =  [1 0] X + [2]                               
                                     [0 1]     [2]                               
                                  >  [1 0] X + [0]                               
                                     [0 1]     [2]                               
                                  =  [n__sieve(X)]                               
                                                                                 
                        [from(X)] =  [1 0] X + [2]                               
                                     [0 1]     [2]                               
                                  >  [1 0] X + [1]                               
                                     [0 1]     [2]                               
                                  =  [cons(X, n__from(n__s(X)))]                 
                                                                                 
                        [from(X)] =  [1 0] X + [2]                               
                                     [0 1]     [2]                               
                                  >  [1 0] X + [0]                               
                                     [0 1]     [2]                               
                                  =  [n__from(X)]                                
                                                                                 
                           [s(X)] =  [1 0] X + [1]                               
                                     [0 1]     [1]                               
                                  >  [1 0] X + [0]                               
                                     [0 1]     [1]                               
                                  =  [n__s(X)]                                   
                                                                                 
                   [cons(X1, X2)] =  [1 0] X1 + [1]                              
                                     [0 1]      [2]                              
                                  >  [1 0] X1 + [0]                              
                                     [0 1]      [2]                              
                                  =  [n__cons(X1, X2)]                           
                                                                                 
                    [activate(X)] =  [1 2] X + [1]                               
                                     [0 2]     [0]                               
                                  >  [1 0] X + [0]                               
                                     [0 1]     [0]                               
                                  =  [X]                                         
                                                                                 
           [activate(n__from(X))] =  [1 2] X + [5]                               
                                     [0 2]     [4]                               
                                  >  [1 2] X + [3]                               
                                     [0 2]     [2]                               
                                  =  [from(activate(X))]                         
                                                                                 
              [activate(n__s(X))] =  [1 2] X + [3]                               
                                     [0 2]     [2]                               
                                  >  [1 2] X + [2]                               
                                     [0 2]     [1]                               
                                  =  [s(activate(X))]                            
                                                                                 
    [activate(n__filter(X1, X2))] =  [1 2] X1 + [1 2] X2 + [5]                   
                                     [0 2]      [0 2]      [4]                   
                                  >  [1 2] X1 + [1 2] X2 + [3]                   
                                     [0 2]      [0 2]      [2]                   
                                  =  [filter(activate(X1), activate(X2))]        
                                                                                 
      [activate(n__cons(X1, X2))] =  [1 2] X1 + [5]                              
                                     [0 2]      [4]                              
                                  >  [1 2] X1 + [2]                              
                                     [0 2]      [2]                              
                                  =  [cons(activate(X1), X2)]                    
                                                                                 
          [activate(n__sieve(X))] =  [1 2] X + [5]                               
                                     [0 2]     [4]                               
                                  >  [1 2] X + [3]                               
                                     [0 2]     [2]                               
                                  =  [sieve(activate(X))]                        
                                                                                 
                 [filter(X1, X2)] =  [1 0] X1 + [1 0] X2 + [1]                   
                                     [0 1]      [0 1]      [2]                   
                                  >  [1 0] X1 + [1 0] X2 + [0]                   
                                     [0 1]      [0 1]      [2]                   
                                  =  [n__filter(X1, X2)]                         
                                                                                 
                     [primes^#()] =  [1]                                         
                                     [1]                                         
                                  ?  [6]                                         
                                     [4]                                         
                                  =  [c_1(sieve^#(from(s(s(0())))))]             
                                                                                 
                     [sieve^#(X)] =  [1 0] X + [1]                               
                                     [0 0]     [2]                               
                                  >= [1]                                         
                                     [1]                                         
                                  =  [c_2()]                                     
                                                                                 
                      [from^#(X)] =  [1 0] X + [1]                               
                                     [0 0]     [2]                               
                                  ?  [1 0] X + [2]                               
                                     [0 0]     [4]                               
                                  =  [c_3(cons^#(X, n__from(n__s(X))))]          
                                                                                 
                      [from^#(X)] =  [1 0] X + [1]                               
                                     [0 0]     [2]                               
                                  >= [1]                                         
                                     [1]                                         
                                  =  [c_4()]                                     
                                                                                 
                 [cons^#(X1, X2)] =  [1 0] X1 + [1]                              
                                     [0 0]      [2]                              
                                  >= [1]                                         
                                     [1]                                         
                                  =  [c_6()]                                     
                                                                                 
                         [s^#(X)] =  [1 0] X + [1]                               
                                     [0 0]     [2]                               
                                  >= [1]                                         
                                     [1]                                         
                                  =  [c_5()]                                     
                                                                                 
                  [activate^#(X)] =  [1 2] X + [0]                               
                                     [0 0]     [0]                               
                                  ?  [1]                                         
                                     [1]                                         
                                  =  [c_7()]                                     
                                                                                 
         [activate^#(n__from(X))] =  [1 2] X + [4]                               
                                     [0 0]     [0]                               
                                  ?  [1 2] X + [4]                               
                                     [0 0]     [4]                               
                                  =  [c_8(from^#(activate(X)))]                  
                                                                                 
            [activate^#(n__s(X))] =  [1 2] X + [2]                               
                                     [0 0]     [0]                               
                                  ?  [1 2] X + [4]                               
                                     [0 0]     [4]                               
                                  =  [c_9(s^#(activate(X)))]                     
                                                                                 
  [activate^#(n__filter(X1, X2))] =  [1 2] X1 + [1 2] X2 + [4]                   
                                     [0 0]      [0 0]      [0]                   
                                  ?  [1 2] X1 + [1 2] X2 + [6]                   
                                     [0 0]      [0 0]      [4]                   
                                  =  [c_10(filter^#(activate(X1), activate(X2)))]
                                                                                 
    [activate^#(n__cons(X1, X2))] =  [1 2] X1 + [4]                              
                                     [0 0]      [0]                              
                                  ?  [1 2] X1 + [4]                              
                                     [0 0]      [4]                              
                                  =  [c_11(cons^#(activate(X1), X2))]            
                                                                                 
        [activate^#(n__sieve(X))] =  [1 2] X + [4]                               
                                     [0 0]     [0]                               
                                  ?  [1 2] X + [4]                               
                                     [0 0]     [4]                               
                                  =  [c_12(sieve^#(activate(X)))]                
                                                                                 
               [filter^#(X1, X2)] =  [1 0] X1 + [1 0] X2 + [2]                   
                                     [0 0]      [0 0]      [2]                   
                                  >= [2]                                         
                                     [1]                                         
                                  =  [c_15()]                                    
                                                                                 
             [if^#(true(), X, Y)] =  [1 2] X + [1 2] Y + [4]                     
                                     [2 2]     [1 1]     [4]                     
                                  >  [1 2] X + [2]                               
                                     [0 0]     [2]                               
                                  =  [c_13(activate^#(X))]                       
                                                                                 
            [if^#(false(), X, Y)] =  [1 2] X + [1 2] Y + [3]                     
                                     [2 2]     [1 1]     [3]                     
                                  >  [1 2] Y + [2]                               
                                     [0 0]     [2]                               
                                  =  [c_14(activate^#(Y))]                       
                                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { primes^#() -> c_1(sieve^#(from(s(s(0())))))
  , sieve^#(X) -> c_2()
  , from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
  , from^#(X) -> c_4()
  , cons^#(X1, X2) -> c_6()
  , s^#(X) -> c_5()
  , activate^#(X) -> c_7()
  , activate^#(n__from(X)) -> c_8(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)))
  , activate^#(n__filter(X1, X2)) ->
    c_10(filter^#(activate(X1), activate(X2)))
  , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2))
  , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)))
  , filter^#(X1, X2) -> c_15() }
Weak DPs:
  { if^#(true(), X, Y) -> c_13(activate^#(X))
  , if^#(false(), X, Y) -> c_14(activate^#(Y)) }
Weak Trs:
  { sieve(X) -> n__sieve(X)
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , cons(X1, X2) -> n__cons(X1, X2)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
  , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
  , activate(n__sieve(X)) -> sieve(activate(X))
  , filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We estimate the number of application of {2,4,5,6,13} by
applications of Pre({2,4,5,6,13}) = {1,3,8,9,10,11,12}. Here rules
are labeled as follows:

  DPs:
    { 1: primes^#() -> c_1(sieve^#(from(s(s(0())))))
    , 2: sieve^#(X) -> c_2()
    , 3: from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
    , 4: from^#(X) -> c_4()
    , 5: cons^#(X1, X2) -> c_6()
    , 6: s^#(X) -> c_5()
    , 7: activate^#(X) -> c_7()
    , 8: activate^#(n__from(X)) -> c_8(from^#(activate(X)))
    , 9: activate^#(n__s(X)) -> c_9(s^#(activate(X)))
    , 10: activate^#(n__filter(X1, X2)) ->
          c_10(filter^#(activate(X1), activate(X2)))
    , 11: activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2))
    , 12: activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)))
    , 13: filter^#(X1, X2) -> c_15()
    , 14: if^#(true(), X, Y) -> c_13(activate^#(X))
    , 15: if^#(false(), X, Y) -> c_14(activate^#(Y)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { primes^#() -> c_1(sieve^#(from(s(s(0())))))
  , from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
  , activate^#(X) -> c_7()
  , activate^#(n__from(X)) -> c_8(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)))
  , activate^#(n__filter(X1, X2)) ->
    c_10(filter^#(activate(X1), activate(X2)))
  , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2))
  , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X))) }
Weak DPs:
  { sieve^#(X) -> c_2()
  , from^#(X) -> c_4()
  , cons^#(X1, X2) -> c_6()
  , s^#(X) -> c_5()
  , filter^#(X1, X2) -> c_15()
  , if^#(true(), X, Y) -> c_13(activate^#(X))
  , if^#(false(), X, Y) -> c_14(activate^#(Y)) }
Weak Trs:
  { sieve(X) -> n__sieve(X)
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , cons(X1, X2) -> n__cons(X1, X2)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
  , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
  , activate(n__sieve(X)) -> sieve(activate(X))
  , filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We estimate the number of application of {1,2} by applications of
Pre({1,2}) = {4}. Here rules are labeled as follows:

  DPs:
    { 1: primes^#() -> c_1(sieve^#(from(s(s(0())))))
    , 2: from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
    , 3: activate^#(X) -> c_7()
    , 4: activate^#(n__from(X)) -> c_8(from^#(activate(X)))
    , 5: activate^#(n__s(X)) -> c_9(s^#(activate(X)))
    , 6: activate^#(n__filter(X1, X2)) ->
         c_10(filter^#(activate(X1), activate(X2)))
    , 7: activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2))
    , 8: activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X)))
    , 9: sieve^#(X) -> c_2()
    , 10: from^#(X) -> c_4()
    , 11: cons^#(X1, X2) -> c_6()
    , 12: s^#(X) -> c_5()
    , 13: filter^#(X1, X2) -> c_15()
    , 14: if^#(true(), X, Y) -> c_13(activate^#(X))
    , 15: if^#(false(), X, Y) -> c_14(activate^#(Y)) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { activate^#(X) -> c_7()
  , activate^#(n__from(X)) -> c_8(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)))
  , activate^#(n__filter(X1, X2)) ->
    c_10(filter^#(activate(X1), activate(X2)))
  , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2))
  , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X))) }
Weak DPs:
  { primes^#() -> c_1(sieve^#(from(s(s(0())))))
  , sieve^#(X) -> c_2()
  , from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
  , from^#(X) -> c_4()
  , cons^#(X1, X2) -> c_6()
  , s^#(X) -> c_5()
  , filter^#(X1, X2) -> c_15()
  , if^#(true(), X, Y) -> c_13(activate^#(X))
  , if^#(false(), X, Y) -> c_14(activate^#(Y)) }
Weak Trs:
  { sieve(X) -> n__sieve(X)
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , cons(X1, X2) -> n__cons(X1, X2)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
  , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
  , activate(n__sieve(X)) -> sieve(activate(X))
  , filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ primes^#() -> c_1(sieve^#(from(s(s(0())))))
, sieve^#(X) -> c_2()
, from^#(X) -> c_3(cons^#(X, n__from(n__s(X))))
, from^#(X) -> c_4()
, cons^#(X1, X2) -> c_6()
, s^#(X) -> c_5()
, filter^#(X1, X2) -> c_15() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { activate^#(X) -> c_7()
  , activate^#(n__from(X)) -> c_8(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)))
  , activate^#(n__filter(X1, X2)) ->
    c_10(filter^#(activate(X1), activate(X2)))
  , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2))
  , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X))) }
Weak DPs:
  { if^#(true(), X, Y) -> c_13(activate^#(X))
  , if^#(false(), X, Y) -> c_14(activate^#(Y)) }
Weak Trs:
  { sieve(X) -> n__sieve(X)
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , cons(X1, X2) -> n__cons(X1, X2)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
  , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
  , activate(n__sieve(X)) -> sieve(activate(X))
  , filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Due to missing edges in the dependency-graph, the right-hand sides
of following rules could be simplified:

  { activate^#(n__from(X)) -> c_8(from^#(activate(X)))
  , activate^#(n__s(X)) -> c_9(s^#(activate(X)))
  , activate^#(n__filter(X1, X2)) ->
    c_10(filter^#(activate(X1), activate(X2)))
  , activate^#(n__cons(X1, X2)) -> c_11(cons^#(activate(X1), X2))
  , activate^#(n__sieve(X)) -> c_12(sieve^#(activate(X))) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { activate^#(X) -> c_1()
  , activate^#(n__from(X)) -> c_2()
  , activate^#(n__s(X)) -> c_3()
  , activate^#(n__filter(X1, X2)) -> c_4()
  , activate^#(n__cons(X1, X2)) -> c_5()
  , activate^#(n__sieve(X)) -> c_6() }
Weak DPs:
  { if^#(true(), X, Y) -> c_7(activate^#(X))
  , if^#(false(), X, Y) -> c_8(activate^#(Y)) }
Weak Trs:
  { sieve(X) -> n__sieve(X)
  , from(X) -> cons(X, n__from(n__s(X)))
  , from(X) -> n__from(X)
  , s(X) -> n__s(X)
  , cons(X1, X2) -> n__cons(X1, X2)
  , activate(X) -> X
  , activate(n__from(X)) -> from(activate(X))
  , activate(n__s(X)) -> s(activate(X))
  , activate(n__filter(X1, X2)) -> filter(activate(X1), activate(X2))
  , activate(n__cons(X1, X2)) -> cons(activate(X1), X2)
  , activate(n__sieve(X)) -> sieve(activate(X))
  , filter(X1, X2) -> n__filter(X1, X2) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { activate^#(X) -> c_1()
  , activate^#(n__from(X)) -> c_2()
  , activate^#(n__s(X)) -> c_3()
  , activate^#(n__filter(X1, X2)) -> c_4()
  , activate^#(n__cons(X1, X2)) -> c_5()
  , activate^#(n__sieve(X)) -> c_6() }
Weak DPs:
  { if^#(true(), X, Y) -> c_7(activate^#(X))
  , if^#(false(), X, Y) -> c_8(activate^#(Y)) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Consider the dependency graph

  1: activate^#(X) -> c_1()
  
  2: activate^#(n__from(X)) -> c_2()
  
  3: activate^#(n__s(X)) -> c_3()
  
  4: activate^#(n__filter(X1, X2)) -> c_4()
  
  5: activate^#(n__cons(X1, X2)) -> c_5()
  
  6: activate^#(n__sieve(X)) -> c_6()
  
  7: if^#(true(), X, Y) -> c_7(activate^#(X))
     -->_1 activate^#(n__sieve(X)) -> c_6() :6
     -->_1 activate^#(n__cons(X1, X2)) -> c_5() :5
     -->_1 activate^#(n__filter(X1, X2)) -> c_4() :4
     -->_1 activate^#(n__s(X)) -> c_3() :3
     -->_1 activate^#(n__from(X)) -> c_2() :2
     -->_1 activate^#(X) -> c_1() :1
  
  8: if^#(false(), X, Y) -> c_8(activate^#(Y))
     -->_1 activate^#(n__sieve(X)) -> c_6() :6
     -->_1 activate^#(n__cons(X1, X2)) -> c_5() :5
     -->_1 activate^#(n__filter(X1, X2)) -> c_4() :4
     -->_1 activate^#(n__s(X)) -> c_3() :3
     -->_1 activate^#(n__from(X)) -> c_2() :2
     -->_1 activate^#(X) -> c_1() :1
  

Following roots of the dependency graph are removed, as the
considered set of starting terms is closed under reduction with
respect to these rules (modulo compound contexts).

  { if^#(true(), X, Y) -> c_7(activate^#(X))
  , if^#(false(), X, Y) -> c_8(activate^#(Y)) }


We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { activate^#(X) -> c_1()
  , activate^#(n__from(X)) -> c_2()
  , activate^#(n__s(X)) -> c_3()
  , activate^#(n__filter(X1, X2)) -> c_4()
  , activate^#(n__cons(X1, X2)) -> c_5()
  , activate^#(n__sieve(X)) -> c_6() }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Consider the dependency graph

  1: activate^#(X) -> c_1()
  
  2: activate^#(n__from(X)) -> c_2()
  
  3: activate^#(n__s(X)) -> c_3()
  
  4: activate^#(n__filter(X1, X2)) -> c_4()
  
  5: activate^#(n__cons(X1, X2)) -> c_5()
  
  6: activate^#(n__sieve(X)) -> c_6()
  

Following roots of the dependency graph are removed, as the
considered set of starting terms is closed under reduction with
respect to these rules (modulo compound contexts).

  { activate^#(X) -> c_1()
  , activate^#(n__from(X)) -> c_2()
  , activate^#(n__s(X)) -> c_3()
  , activate^#(n__filter(X1, X2)) -> c_4()
  , activate^#(n__cons(X1, X2)) -> c_5()
  , activate^#(n__sieve(X)) -> c_6() }


We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(n^1))