MAYBE

We are left with following problem, upon which TcT provides the
certificate MAYBE.

Strict Trs:
  { eq(0(), 0()) -> true()
  , eq(0(), s(x)) -> false()
  , eq(s(x), 0()) -> false()
  , eq(s(x), s(y)) -> eq(x, y)
  , le(0(), y) -> true()
  , le(s(x), 0()) -> false()
  , le(s(x), s(y)) -> le(x, y)
  , app(nil(), y) -> y
  , app(add(n, x), y) -> add(n, app(x, y))
  , min(add(n, nil())) -> n
  , min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x)))
  , if_min(true(), add(n, add(m, x))) -> min(add(n, x))
  , if_min(false(), add(n, add(m, x))) -> min(add(m, x))
  , head(add(n, x)) -> n
  , tail(nil()) -> nil()
  , tail(add(n, x)) -> x
  , null(nil()) -> true()
  , null(add(n, x)) -> false()
  , rm(n, nil()) -> nil()
  , rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x))
  , if_rm(true(), n, add(m, x)) -> rm(n, x)
  , if_rm(false(), n, add(m, x)) -> add(m, rm(n, x))
  , minsort(x) -> mins(x, nil(), nil())
  , mins(x, y, z) -> if(null(x), x, y, z)
  , if(true(), x, y, z) -> z
  , if(false(), x, y, z) -> if2(eq(head(x), min(x)), x, y, z)
  , if2(true(), x, y, z) ->
    mins(app(rm(head(x), tail(x)), y),
         nil(),
         app(z, add(head(x), nil())))
  , if2(false(), x, y, z) -> mins(tail(x), add(head(x), y), z) }
Obligation:
  runtime complexity
Answer:
  MAYBE

None of the processors succeeded.

Details of failed attempt(s):
-----------------------------
1) 'WithProblem (timeout of 60 seconds)' failed due to the
   following reason:
   
   Computation stopped due to timeout after 60.0 seconds.

2) 'Best' failed due to the following reason:
   
   None of the processors succeeded.
   
   Details of failed attempt(s):
   -----------------------------
   1) 'WithProblem (timeout of 30 seconds) (timeout of 60 seconds)'
      failed due to the following reason:
      
      Computation stopped due to timeout after 30.0 seconds.
   
   2) 'Fastest (timeout of 5 seconds) (timeout of 60 seconds)' failed
      due to the following reason:
      
      None of the processors succeeded.
      
      Details of failed attempt(s):
      -----------------------------
      1) 'Bounds with minimal-enrichment and initial automaton 'match''
         failed due to the following reason:
         
         match-boundness of the problem could not be verified.
      
      2) 'Bounds with perSymbol-enrichment and initial automaton 'match''
         failed due to the following reason:
         
         match-boundness of the problem could not be verified.
      
   
   3) 'Best' failed due to the following reason:
      
      None of the processors succeeded.
      
      Details of failed attempt(s):
      -----------------------------
      1) 'Polynomial Path Order (PS) (timeout of 60 seconds)' failed due
         to the following reason:
         
         The processor is inapplicable, reason:
           Processor only applicable for innermost runtime complexity analysis
      
      2) 'bsearch-popstar (timeout of 60 seconds)' failed due to the
         following reason:
         
         The processor is inapplicable, reason:
           Processor only applicable for innermost runtime complexity analysis
      
   

3) 'Innermost Weak Dependency Pairs (timeout of 60 seconds)' failed
   due to the following reason:
   
   We add the following weak dependency pairs:
   
   Strict DPs:
     { eq^#(0(), 0()) -> c_1()
     , eq^#(0(), s(x)) -> c_2()
     , eq^#(s(x), 0()) -> c_3()
     , eq^#(s(x), s(y)) -> c_4(eq^#(x, y))
     , le^#(0(), y) -> c_5()
     , le^#(s(x), 0()) -> c_6()
     , le^#(s(x), s(y)) -> c_7(le^#(x, y))
     , app^#(nil(), y) -> c_8(y)
     , app^#(add(n, x), y) -> c_9(n, app^#(x, y))
     , min^#(add(n, nil())) -> c_10(n)
     , min^#(add(n, add(m, x))) ->
       c_11(if_min^#(le(n, m), add(n, add(m, x))))
     , if_min^#(true(), add(n, add(m, x))) -> c_12(min^#(add(n, x)))
     , if_min^#(false(), add(n, add(m, x))) -> c_13(min^#(add(m, x)))
     , head^#(add(n, x)) -> c_14(n)
     , tail^#(nil()) -> c_15()
     , tail^#(add(n, x)) -> c_16(x)
     , null^#(nil()) -> c_17()
     , null^#(add(n, x)) -> c_18()
     , rm^#(n, nil()) -> c_19()
     , rm^#(n, add(m, x)) -> c_20(if_rm^#(eq(n, m), n, add(m, x)))
     , if_rm^#(true(), n, add(m, x)) -> c_21(rm^#(n, x))
     , if_rm^#(false(), n, add(m, x)) -> c_22(m, rm^#(n, x))
     , minsort^#(x) -> c_23(mins^#(x, nil(), nil()))
     , mins^#(x, y, z) -> c_24(if^#(null(x), x, y, z))
     , if^#(true(), x, y, z) -> c_25(z)
     , if^#(false(), x, y, z) ->
       c_26(if2^#(eq(head(x), min(x)), x, y, z))
     , if2^#(true(), x, y, z) ->
       c_27(mins^#(app(rm(head(x), tail(x)), y),
                   nil(),
                   app(z, add(head(x), nil()))))
     , if2^#(false(), x, y, z) ->
       c_28(mins^#(tail(x), add(head(x), y), z)) }
   
   and mark the set of starting terms.
   
   We are left with following problem, upon which TcT provides the
   certificate MAYBE.
   
   Strict DPs:
     { eq^#(0(), 0()) -> c_1()
     , eq^#(0(), s(x)) -> c_2()
     , eq^#(s(x), 0()) -> c_3()
     , eq^#(s(x), s(y)) -> c_4(eq^#(x, y))
     , le^#(0(), y) -> c_5()
     , le^#(s(x), 0()) -> c_6()
     , le^#(s(x), s(y)) -> c_7(le^#(x, y))
     , app^#(nil(), y) -> c_8(y)
     , app^#(add(n, x), y) -> c_9(n, app^#(x, y))
     , min^#(add(n, nil())) -> c_10(n)
     , min^#(add(n, add(m, x))) ->
       c_11(if_min^#(le(n, m), add(n, add(m, x))))
     , if_min^#(true(), add(n, add(m, x))) -> c_12(min^#(add(n, x)))
     , if_min^#(false(), add(n, add(m, x))) -> c_13(min^#(add(m, x)))
     , head^#(add(n, x)) -> c_14(n)
     , tail^#(nil()) -> c_15()
     , tail^#(add(n, x)) -> c_16(x)
     , null^#(nil()) -> c_17()
     , null^#(add(n, x)) -> c_18()
     , rm^#(n, nil()) -> c_19()
     , rm^#(n, add(m, x)) -> c_20(if_rm^#(eq(n, m), n, add(m, x)))
     , if_rm^#(true(), n, add(m, x)) -> c_21(rm^#(n, x))
     , if_rm^#(false(), n, add(m, x)) -> c_22(m, rm^#(n, x))
     , minsort^#(x) -> c_23(mins^#(x, nil(), nil()))
     , mins^#(x, y, z) -> c_24(if^#(null(x), x, y, z))
     , if^#(true(), x, y, z) -> c_25(z)
     , if^#(false(), x, y, z) ->
       c_26(if2^#(eq(head(x), min(x)), x, y, z))
     , if2^#(true(), x, y, z) ->
       c_27(mins^#(app(rm(head(x), tail(x)), y),
                   nil(),
                   app(z, add(head(x), nil()))))
     , if2^#(false(), x, y, z) ->
       c_28(mins^#(tail(x), add(head(x), y), z)) }
   Strict Trs:
     { eq(0(), 0()) -> true()
     , eq(0(), s(x)) -> false()
     , eq(s(x), 0()) -> false()
     , eq(s(x), s(y)) -> eq(x, y)
     , le(0(), y) -> true()
     , le(s(x), 0()) -> false()
     , le(s(x), s(y)) -> le(x, y)
     , app(nil(), y) -> y
     , app(add(n, x), y) -> add(n, app(x, y))
     , min(add(n, nil())) -> n
     , min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x)))
     , if_min(true(), add(n, add(m, x))) -> min(add(n, x))
     , if_min(false(), add(n, add(m, x))) -> min(add(m, x))
     , head(add(n, x)) -> n
     , tail(nil()) -> nil()
     , tail(add(n, x)) -> x
     , null(nil()) -> true()
     , null(add(n, x)) -> false()
     , rm(n, nil()) -> nil()
     , rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x))
     , if_rm(true(), n, add(m, x)) -> rm(n, x)
     , if_rm(false(), n, add(m, x)) -> add(m, rm(n, x))
     , minsort(x) -> mins(x, nil(), nil())
     , mins(x, y, z) -> if(null(x), x, y, z)
     , if(true(), x, y, z) -> z
     , if(false(), x, y, z) -> if2(eq(head(x), min(x)), x, y, z)
     , if2(true(), x, y, z) ->
       mins(app(rm(head(x), tail(x)), y),
            nil(),
            app(z, add(head(x), nil())))
     , if2(false(), x, y, z) -> mins(tail(x), add(head(x), y), z) }
   Obligation:
     runtime complexity
   Answer:
     MAYBE
   
   We estimate the number of application of {1,2,3,5,6,15,17,18,19} by
   applications of Pre({1,2,3,5,6,15,17,18,19}) =
   {4,7,8,9,10,14,16,21,22,25}. Here rules are labeled as follows:
   
     DPs:
       { 1: eq^#(0(), 0()) -> c_1()
       , 2: eq^#(0(), s(x)) -> c_2()
       , 3: eq^#(s(x), 0()) -> c_3()
       , 4: eq^#(s(x), s(y)) -> c_4(eq^#(x, y))
       , 5: le^#(0(), y) -> c_5()
       , 6: le^#(s(x), 0()) -> c_6()
       , 7: le^#(s(x), s(y)) -> c_7(le^#(x, y))
       , 8: app^#(nil(), y) -> c_8(y)
       , 9: app^#(add(n, x), y) -> c_9(n, app^#(x, y))
       , 10: min^#(add(n, nil())) -> c_10(n)
       , 11: min^#(add(n, add(m, x))) ->
             c_11(if_min^#(le(n, m), add(n, add(m, x))))
       , 12: if_min^#(true(), add(n, add(m, x))) -> c_12(min^#(add(n, x)))
       , 13: if_min^#(false(), add(n, add(m, x))) ->
             c_13(min^#(add(m, x)))
       , 14: head^#(add(n, x)) -> c_14(n)
       , 15: tail^#(nil()) -> c_15()
       , 16: tail^#(add(n, x)) -> c_16(x)
       , 17: null^#(nil()) -> c_17()
       , 18: null^#(add(n, x)) -> c_18()
       , 19: rm^#(n, nil()) -> c_19()
       , 20: rm^#(n, add(m, x)) -> c_20(if_rm^#(eq(n, m), n, add(m, x)))
       , 21: if_rm^#(true(), n, add(m, x)) -> c_21(rm^#(n, x))
       , 22: if_rm^#(false(), n, add(m, x)) -> c_22(m, rm^#(n, x))
       , 23: minsort^#(x) -> c_23(mins^#(x, nil(), nil()))
       , 24: mins^#(x, y, z) -> c_24(if^#(null(x), x, y, z))
       , 25: if^#(true(), x, y, z) -> c_25(z)
       , 26: if^#(false(), x, y, z) ->
             c_26(if2^#(eq(head(x), min(x)), x, y, z))
       , 27: if2^#(true(), x, y, z) ->
             c_27(mins^#(app(rm(head(x), tail(x)), y),
                         nil(),
                         app(z, add(head(x), nil()))))
       , 28: if2^#(false(), x, y, z) ->
             c_28(mins^#(tail(x), add(head(x), y), z)) }
   
   We are left with following problem, upon which TcT provides the
   certificate MAYBE.
   
   Strict DPs:
     { eq^#(s(x), s(y)) -> c_4(eq^#(x, y))
     , le^#(s(x), s(y)) -> c_7(le^#(x, y))
     , app^#(nil(), y) -> c_8(y)
     , app^#(add(n, x), y) -> c_9(n, app^#(x, y))
     , min^#(add(n, nil())) -> c_10(n)
     , min^#(add(n, add(m, x))) ->
       c_11(if_min^#(le(n, m), add(n, add(m, x))))
     , if_min^#(true(), add(n, add(m, x))) -> c_12(min^#(add(n, x)))
     , if_min^#(false(), add(n, add(m, x))) -> c_13(min^#(add(m, x)))
     , head^#(add(n, x)) -> c_14(n)
     , tail^#(add(n, x)) -> c_16(x)
     , rm^#(n, add(m, x)) -> c_20(if_rm^#(eq(n, m), n, add(m, x)))
     , if_rm^#(true(), n, add(m, x)) -> c_21(rm^#(n, x))
     , if_rm^#(false(), n, add(m, x)) -> c_22(m, rm^#(n, x))
     , minsort^#(x) -> c_23(mins^#(x, nil(), nil()))
     , mins^#(x, y, z) -> c_24(if^#(null(x), x, y, z))
     , if^#(true(), x, y, z) -> c_25(z)
     , if^#(false(), x, y, z) ->
       c_26(if2^#(eq(head(x), min(x)), x, y, z))
     , if2^#(true(), x, y, z) ->
       c_27(mins^#(app(rm(head(x), tail(x)), y),
                   nil(),
                   app(z, add(head(x), nil()))))
     , if2^#(false(), x, y, z) ->
       c_28(mins^#(tail(x), add(head(x), y), z)) }
   Strict Trs:
     { eq(0(), 0()) -> true()
     , eq(0(), s(x)) -> false()
     , eq(s(x), 0()) -> false()
     , eq(s(x), s(y)) -> eq(x, y)
     , le(0(), y) -> true()
     , le(s(x), 0()) -> false()
     , le(s(x), s(y)) -> le(x, y)
     , app(nil(), y) -> y
     , app(add(n, x), y) -> add(n, app(x, y))
     , min(add(n, nil())) -> n
     , min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x)))
     , if_min(true(), add(n, add(m, x))) -> min(add(n, x))
     , if_min(false(), add(n, add(m, x))) -> min(add(m, x))
     , head(add(n, x)) -> n
     , tail(nil()) -> nil()
     , tail(add(n, x)) -> x
     , null(nil()) -> true()
     , null(add(n, x)) -> false()
     , rm(n, nil()) -> nil()
     , rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x))
     , if_rm(true(), n, add(m, x)) -> rm(n, x)
     , if_rm(false(), n, add(m, x)) -> add(m, rm(n, x))
     , minsort(x) -> mins(x, nil(), nil())
     , mins(x, y, z) -> if(null(x), x, y, z)
     , if(true(), x, y, z) -> z
     , if(false(), x, y, z) -> if2(eq(head(x), min(x)), x, y, z)
     , if2(true(), x, y, z) ->
       mins(app(rm(head(x), tail(x)), y),
            nil(),
            app(z, add(head(x), nil())))
     , if2(false(), x, y, z) -> mins(tail(x), add(head(x), y), z) }
   Weak DPs:
     { eq^#(0(), 0()) -> c_1()
     , eq^#(0(), s(x)) -> c_2()
     , eq^#(s(x), 0()) -> c_3()
     , le^#(0(), y) -> c_5()
     , le^#(s(x), 0()) -> c_6()
     , tail^#(nil()) -> c_15()
     , null^#(nil()) -> c_17()
     , null^#(add(n, x)) -> c_18()
     , rm^#(n, nil()) -> c_19() }
   Obligation:
     runtime complexity
   Answer:
     MAYBE
   
   Empty strict component of the problem is NOT empty.


Arrrr..