MAYBE

We are left with following problem, upon which TcT provides the
certificate MAYBE.

Strict Trs:
  { a__primes() -> a__sieve(a__from(s(s(0()))))
  , a__primes() -> primes()
  , a__sieve(X) -> sieve(X)
  , a__sieve(cons(X, Y)) -> cons(mark(X), filter(X, sieve(Y)))
  , a__from(X) -> cons(mark(X), from(s(X)))
  , a__from(X) -> from(X)
  , mark(s(X)) -> s(mark(X))
  , mark(0()) -> 0()
  , mark(cons(X1, X2)) -> cons(mark(X1), X2)
  , mark(from(X)) -> a__from(mark(X))
  , mark(true()) -> true()
  , mark(false()) -> false()
  , mark(divides(X1, X2)) -> divides(mark(X1), mark(X2))
  , mark(filter(X1, X2)) -> a__filter(mark(X1), mark(X2))
  , mark(sieve(X)) -> a__sieve(mark(X))
  , mark(primes()) -> a__primes()
  , mark(head(X)) -> a__head(mark(X))
  , mark(tail(X)) -> a__tail(mark(X))
  , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
  , a__head(X) -> head(X)
  , a__head(cons(X, Y)) -> mark(X)
  , a__tail(X) -> tail(X)
  , a__tail(cons(X, Y)) -> mark(Y)
  , a__if(X1, X2, X3) -> if(X1, X2, X3)
  , a__if(true(), X, Y) -> mark(X)
  , a__if(false(), X, Y) -> mark(Y)
  , a__filter(X1, X2) -> filter(X1, X2)
  , a__filter(s(s(X)), cons(Y, Z)) ->
    a__if(divides(s(s(mark(X))), mark(Y)),
          filter(s(s(X)), Z),
          cons(Y, filter(X, sieve(Y)))) }
Obligation:
  runtime complexity
Answer:
  MAYBE

None of the processors succeeded.

Details of failed attempt(s):
-----------------------------
1) 'WithProblem (timeout of 60 seconds)' failed due to the
   following reason:
   
   Computation stopped due to timeout after 60.0 seconds.

2) 'Best' failed due to the following reason:
   
   None of the processors succeeded.
   
   Details of failed attempt(s):
   -----------------------------
   1) 'WithProblem (timeout of 30 seconds) (timeout of 60 seconds)'
      failed due to the following reason:
      
      Computation stopped due to timeout after 30.0 seconds.
   
   2) 'Best' failed due to the following reason:
      
      None of the processors succeeded.
      
      Details of failed attempt(s):
      -----------------------------
      1) 'Polynomial Path Order (PS) (timeout of 60 seconds)' failed due
         to the following reason:
         
         The processor is inapplicable, reason:
           Processor only applicable for innermost runtime complexity analysis
      
      2) 'bsearch-popstar (timeout of 60 seconds)' failed due to the
         following reason:
         
         The processor is inapplicable, reason:
           Processor only applicable for innermost runtime complexity analysis
      
   
   3) 'Fastest (timeout of 5 seconds) (timeout of 60 seconds)' failed
      due to the following reason:
      
      None of the processors succeeded.
      
      Details of failed attempt(s):
      -----------------------------
      1) 'Bounds with perSymbol-enrichment and initial automaton 'match''
         failed due to the following reason:
         
         match-boundness of the problem could not be verified.
      
      2) 'Bounds with minimal-enrichment and initial automaton 'match''
         failed due to the following reason:
         
         match-boundness of the problem could not be verified.
      
   

3) 'Innermost Weak Dependency Pairs (timeout of 60 seconds)' failed
   due to the following reason:
   
   We add the following weak dependency pairs:
   
   Strict DPs:
     { a__primes^#() -> c_1(a__sieve^#(a__from(s(s(0())))))
     , a__primes^#() -> c_2()
     , a__sieve^#(X) -> c_3(X)
     , a__sieve^#(cons(X, Y)) -> c_4(mark^#(X), X, Y)
     , mark^#(s(X)) -> c_7(mark^#(X))
     , mark^#(0()) -> c_8()
     , mark^#(cons(X1, X2)) -> c_9(mark^#(X1), X2)
     , mark^#(from(X)) -> c_10(a__from^#(mark(X)))
     , mark^#(true()) -> c_11()
     , mark^#(false()) -> c_12()
     , mark^#(divides(X1, X2)) -> c_13(mark^#(X1), mark^#(X2))
     , mark^#(filter(X1, X2)) -> c_14(a__filter^#(mark(X1), mark(X2)))
     , mark^#(sieve(X)) -> c_15(a__sieve^#(mark(X)))
     , mark^#(primes()) -> c_16(a__primes^#())
     , mark^#(head(X)) -> c_17(a__head^#(mark(X)))
     , mark^#(tail(X)) -> c_18(a__tail^#(mark(X)))
     , mark^#(if(X1, X2, X3)) -> c_19(a__if^#(mark(X1), X2, X3))
     , a__from^#(X) -> c_5(mark^#(X), X)
     , a__from^#(X) -> c_6(X)
     , a__filter^#(X1, X2) -> c_27(X1, X2)
     , a__filter^#(s(s(X)), cons(Y, Z)) ->
       c_28(a__if^#(divides(s(s(mark(X))), mark(Y)),
                    filter(s(s(X)), Z),
                    cons(Y, filter(X, sieve(Y)))))
     , a__head^#(X) -> c_20(X)
     , a__head^#(cons(X, Y)) -> c_21(mark^#(X))
     , a__tail^#(X) -> c_22(X)
     , a__tail^#(cons(X, Y)) -> c_23(mark^#(Y))
     , a__if^#(X1, X2, X3) -> c_24(X1, X2, X3)
     , a__if^#(true(), X, Y) -> c_25(mark^#(X))
     , a__if^#(false(), X, Y) -> c_26(mark^#(Y)) }
   
   and mark the set of starting terms.
   
   We are left with following problem, upon which TcT provides the
   certificate MAYBE.
   
   Strict DPs:
     { a__primes^#() -> c_1(a__sieve^#(a__from(s(s(0())))))
     , a__primes^#() -> c_2()
     , a__sieve^#(X) -> c_3(X)
     , a__sieve^#(cons(X, Y)) -> c_4(mark^#(X), X, Y)
     , mark^#(s(X)) -> c_7(mark^#(X))
     , mark^#(0()) -> c_8()
     , mark^#(cons(X1, X2)) -> c_9(mark^#(X1), X2)
     , mark^#(from(X)) -> c_10(a__from^#(mark(X)))
     , mark^#(true()) -> c_11()
     , mark^#(false()) -> c_12()
     , mark^#(divides(X1, X2)) -> c_13(mark^#(X1), mark^#(X2))
     , mark^#(filter(X1, X2)) -> c_14(a__filter^#(mark(X1), mark(X2)))
     , mark^#(sieve(X)) -> c_15(a__sieve^#(mark(X)))
     , mark^#(primes()) -> c_16(a__primes^#())
     , mark^#(head(X)) -> c_17(a__head^#(mark(X)))
     , mark^#(tail(X)) -> c_18(a__tail^#(mark(X)))
     , mark^#(if(X1, X2, X3)) -> c_19(a__if^#(mark(X1), X2, X3))
     , a__from^#(X) -> c_5(mark^#(X), X)
     , a__from^#(X) -> c_6(X)
     , a__filter^#(X1, X2) -> c_27(X1, X2)
     , a__filter^#(s(s(X)), cons(Y, Z)) ->
       c_28(a__if^#(divides(s(s(mark(X))), mark(Y)),
                    filter(s(s(X)), Z),
                    cons(Y, filter(X, sieve(Y)))))
     , a__head^#(X) -> c_20(X)
     , a__head^#(cons(X, Y)) -> c_21(mark^#(X))
     , a__tail^#(X) -> c_22(X)
     , a__tail^#(cons(X, Y)) -> c_23(mark^#(Y))
     , a__if^#(X1, X2, X3) -> c_24(X1, X2, X3)
     , a__if^#(true(), X, Y) -> c_25(mark^#(X))
     , a__if^#(false(), X, Y) -> c_26(mark^#(Y)) }
   Strict Trs:
     { a__primes() -> a__sieve(a__from(s(s(0()))))
     , a__primes() -> primes()
     , a__sieve(X) -> sieve(X)
     , a__sieve(cons(X, Y)) -> cons(mark(X), filter(X, sieve(Y)))
     , a__from(X) -> cons(mark(X), from(s(X)))
     , a__from(X) -> from(X)
     , mark(s(X)) -> s(mark(X))
     , mark(0()) -> 0()
     , mark(cons(X1, X2)) -> cons(mark(X1), X2)
     , mark(from(X)) -> a__from(mark(X))
     , mark(true()) -> true()
     , mark(false()) -> false()
     , mark(divides(X1, X2)) -> divides(mark(X1), mark(X2))
     , mark(filter(X1, X2)) -> a__filter(mark(X1), mark(X2))
     , mark(sieve(X)) -> a__sieve(mark(X))
     , mark(primes()) -> a__primes()
     , mark(head(X)) -> a__head(mark(X))
     , mark(tail(X)) -> a__tail(mark(X))
     , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
     , a__head(X) -> head(X)
     , a__head(cons(X, Y)) -> mark(X)
     , a__tail(X) -> tail(X)
     , a__tail(cons(X, Y)) -> mark(Y)
     , a__if(X1, X2, X3) -> if(X1, X2, X3)
     , a__if(true(), X, Y) -> mark(X)
     , a__if(false(), X, Y) -> mark(Y)
     , a__filter(X1, X2) -> filter(X1, X2)
     , a__filter(s(s(X)), cons(Y, Z)) ->
       a__if(divides(s(s(mark(X))), mark(Y)),
             filter(s(s(X)), Z),
             cons(Y, filter(X, sieve(Y)))) }
   Obligation:
     runtime complexity
   Answer:
     MAYBE
   
   We estimate the number of application of {2,6,9,10} by applications
   of Pre({2,6,9,10}) = {3,4,5,7,11,14,18,19,20,22,23,24,25,26,27,28}.
   Here rules are labeled as follows:
   
     DPs:
       { 1: a__primes^#() -> c_1(a__sieve^#(a__from(s(s(0())))))
       , 2: a__primes^#() -> c_2()
       , 3: a__sieve^#(X) -> c_3(X)
       , 4: a__sieve^#(cons(X, Y)) -> c_4(mark^#(X), X, Y)
       , 5: mark^#(s(X)) -> c_7(mark^#(X))
       , 6: mark^#(0()) -> c_8()
       , 7: mark^#(cons(X1, X2)) -> c_9(mark^#(X1), X2)
       , 8: mark^#(from(X)) -> c_10(a__from^#(mark(X)))
       , 9: mark^#(true()) -> c_11()
       , 10: mark^#(false()) -> c_12()
       , 11: mark^#(divides(X1, X2)) -> c_13(mark^#(X1), mark^#(X2))
       , 12: mark^#(filter(X1, X2)) ->
             c_14(a__filter^#(mark(X1), mark(X2)))
       , 13: mark^#(sieve(X)) -> c_15(a__sieve^#(mark(X)))
       , 14: mark^#(primes()) -> c_16(a__primes^#())
       , 15: mark^#(head(X)) -> c_17(a__head^#(mark(X)))
       , 16: mark^#(tail(X)) -> c_18(a__tail^#(mark(X)))
       , 17: mark^#(if(X1, X2, X3)) -> c_19(a__if^#(mark(X1), X2, X3))
       , 18: a__from^#(X) -> c_5(mark^#(X), X)
       , 19: a__from^#(X) -> c_6(X)
       , 20: a__filter^#(X1, X2) -> c_27(X1, X2)
       , 21: a__filter^#(s(s(X)), cons(Y, Z)) ->
             c_28(a__if^#(divides(s(s(mark(X))), mark(Y)),
                          filter(s(s(X)), Z),
                          cons(Y, filter(X, sieve(Y)))))
       , 22: a__head^#(X) -> c_20(X)
       , 23: a__head^#(cons(X, Y)) -> c_21(mark^#(X))
       , 24: a__tail^#(X) -> c_22(X)
       , 25: a__tail^#(cons(X, Y)) -> c_23(mark^#(Y))
       , 26: a__if^#(X1, X2, X3) -> c_24(X1, X2, X3)
       , 27: a__if^#(true(), X, Y) -> c_25(mark^#(X))
       , 28: a__if^#(false(), X, Y) -> c_26(mark^#(Y)) }
   
   We are left with following problem, upon which TcT provides the
   certificate MAYBE.
   
   Strict DPs:
     { a__primes^#() -> c_1(a__sieve^#(a__from(s(s(0())))))
     , a__sieve^#(X) -> c_3(X)
     , a__sieve^#(cons(X, Y)) -> c_4(mark^#(X), X, Y)
     , mark^#(s(X)) -> c_7(mark^#(X))
     , mark^#(cons(X1, X2)) -> c_9(mark^#(X1), X2)
     , mark^#(from(X)) -> c_10(a__from^#(mark(X)))
     , mark^#(divides(X1, X2)) -> c_13(mark^#(X1), mark^#(X2))
     , mark^#(filter(X1, X2)) -> c_14(a__filter^#(mark(X1), mark(X2)))
     , mark^#(sieve(X)) -> c_15(a__sieve^#(mark(X)))
     , mark^#(primes()) -> c_16(a__primes^#())
     , mark^#(head(X)) -> c_17(a__head^#(mark(X)))
     , mark^#(tail(X)) -> c_18(a__tail^#(mark(X)))
     , mark^#(if(X1, X2, X3)) -> c_19(a__if^#(mark(X1), X2, X3))
     , a__from^#(X) -> c_5(mark^#(X), X)
     , a__from^#(X) -> c_6(X)
     , a__filter^#(X1, X2) -> c_27(X1, X2)
     , a__filter^#(s(s(X)), cons(Y, Z)) ->
       c_28(a__if^#(divides(s(s(mark(X))), mark(Y)),
                    filter(s(s(X)), Z),
                    cons(Y, filter(X, sieve(Y)))))
     , a__head^#(X) -> c_20(X)
     , a__head^#(cons(X, Y)) -> c_21(mark^#(X))
     , a__tail^#(X) -> c_22(X)
     , a__tail^#(cons(X, Y)) -> c_23(mark^#(Y))
     , a__if^#(X1, X2, X3) -> c_24(X1, X2, X3)
     , a__if^#(true(), X, Y) -> c_25(mark^#(X))
     , a__if^#(false(), X, Y) -> c_26(mark^#(Y)) }
   Strict Trs:
     { a__primes() -> a__sieve(a__from(s(s(0()))))
     , a__primes() -> primes()
     , a__sieve(X) -> sieve(X)
     , a__sieve(cons(X, Y)) -> cons(mark(X), filter(X, sieve(Y)))
     , a__from(X) -> cons(mark(X), from(s(X)))
     , a__from(X) -> from(X)
     , mark(s(X)) -> s(mark(X))
     , mark(0()) -> 0()
     , mark(cons(X1, X2)) -> cons(mark(X1), X2)
     , mark(from(X)) -> a__from(mark(X))
     , mark(true()) -> true()
     , mark(false()) -> false()
     , mark(divides(X1, X2)) -> divides(mark(X1), mark(X2))
     , mark(filter(X1, X2)) -> a__filter(mark(X1), mark(X2))
     , mark(sieve(X)) -> a__sieve(mark(X))
     , mark(primes()) -> a__primes()
     , mark(head(X)) -> a__head(mark(X))
     , mark(tail(X)) -> a__tail(mark(X))
     , mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3)
     , a__head(X) -> head(X)
     , a__head(cons(X, Y)) -> mark(X)
     , a__tail(X) -> tail(X)
     , a__tail(cons(X, Y)) -> mark(Y)
     , a__if(X1, X2, X3) -> if(X1, X2, X3)
     , a__if(true(), X, Y) -> mark(X)
     , a__if(false(), X, Y) -> mark(Y)
     , a__filter(X1, X2) -> filter(X1, X2)
     , a__filter(s(s(X)), cons(Y, Z)) ->
       a__if(divides(s(s(mark(X))), mark(Y)),
             filter(s(s(X)), Z),
             cons(Y, filter(X, sieve(Y)))) }
   Weak DPs:
     { a__primes^#() -> c_2()
     , mark^#(0()) -> c_8()
     , mark^#(true()) -> c_11()
     , mark^#(false()) -> c_12() }
   Obligation:
     runtime complexity
   Answer:
     MAYBE
   
   Empty strict component of the problem is NOT empty.


Arrrr..