MAYBE

We are left with following problem, upon which TcT provides the
certificate MAYBE.

Strict Trs:
  { O(0()) -> 0()
  , +(x, 0()) -> x
  , +(x, +(y, z)) -> +(+(x, y), z)
  , +(O(x), O(y)) -> O(+(x, y))
  , +(O(x), I(y)) -> I(+(x, y))
  , +(0(), x) -> x
  , +(I(x), O(y)) -> I(+(x, y))
  , +(I(x), I(y)) -> O(+(+(x, y), I(0())))
  , -(x, 0()) -> x
  , -(O(x), O(y)) -> O(-(x, y))
  , -(O(x), I(y)) -> I(-(-(x, y), I(1())))
  , -(0(), x) -> 0()
  , -(I(x), O(y)) -> I(-(x, y))
  , -(I(x), I(y)) -> O(-(x, y))
  , not(true()) -> false()
  , not(false()) -> true()
  , and(x, true()) -> x
  , and(x, false()) -> false()
  , if(true(), x, y) -> x
  , if(false(), x, y) -> y
  , ge(x, 0()) -> true()
  , ge(O(x), O(y)) -> ge(x, y)
  , ge(O(x), I(y)) -> not(ge(y, x))
  , ge(0(), O(x)) -> ge(0(), x)
  , ge(0(), I(x)) -> false()
  , ge(I(x), O(y)) -> ge(x, y)
  , ge(I(x), I(y)) -> ge(x, y)
  , Log'(O(x)) -> if(ge(x, I(0())), +(Log'(x), I(0())), 0())
  , Log'(0()) -> 0()
  , Log'(I(x)) -> +(Log'(x), I(0()))
  , Log(x) -> -(Log'(x), I(0()))
  , Val(L(x)) -> x
  , Val(N(x, l(), r())) -> x
  , Min(L(x)) -> x
  , Min(N(x, l(), r())) -> Min(l())
  , Max(L(x)) -> x
  , Max(N(x, l(), r())) -> Max(r())
  , BS(L(x)) -> true()
  , BS(N(x, l(), r())) ->
    and(and(ge(x, Max(l())), ge(Min(r()), x)), and(BS(l()), BS(r())))
  , Size(L(x)) -> I(0())
  , Size(N(x, l(), r())) -> +(+(Size(l()), Size(r())), I(1()))
  , WB(L(x)) -> true()
  , WB(N(x, l(), r())) ->
    and(if(ge(Size(l()), Size(r())),
           ge(I(0()), -(Size(l()), Size(r()))),
           ge(I(0()), -(Size(r()), Size(l())))),
        and(WB(l()), WB(r()))) }
Obligation:
  runtime complexity
Answer:
  MAYBE

None of the processors succeeded.

Details of failed attempt(s):
-----------------------------
1) 'WithProblem (timeout of 60 seconds)' failed due to the
   following reason:
   
   Computation stopped due to timeout after 60.0 seconds.

2) 'Best' failed due to the following reason:
   
   None of the processors succeeded.
   
   Details of failed attempt(s):
   -----------------------------
   1) 'WithProblem (timeout of 30 seconds) (timeout of 60 seconds)'
      failed due to the following reason:
      
      Computation stopped due to timeout after 30.0 seconds.
   
   2) 'Best' failed due to the following reason:
      
      None of the processors succeeded.
      
      Details of failed attempt(s):
      -----------------------------
      1) 'Polynomial Path Order (PS) (timeout of 60 seconds)' failed due
         to the following reason:
         
         The processor is inapplicable, reason:
           Processor only applicable for innermost runtime complexity analysis
      
      2) 'bsearch-popstar (timeout of 60 seconds)' failed due to the
         following reason:
         
         The processor is inapplicable, reason:
           Processor only applicable for innermost runtime complexity analysis
      
   
   3) 'Fastest (timeout of 5 seconds) (timeout of 60 seconds)' failed
      due to the following reason:
      
      None of the processors succeeded.
      
      Details of failed attempt(s):
      -----------------------------
      1) 'Bounds with perSymbol-enrichment and initial automaton 'match''
         failed due to the following reason:
         
         match-boundness of the problem could not be verified.
      
      2) 'Bounds with minimal-enrichment and initial automaton 'match''
         failed due to the following reason:
         
         match-boundness of the problem could not be verified.
      
   

3) 'Innermost Weak Dependency Pairs (timeout of 60 seconds)' failed
   due to the following reason:
   
   We add the following weak dependency pairs:
   
   Strict DPs:
     { O^#(0()) -> c_1()
     , +^#(x, 0()) -> c_2(x)
     , +^#(x, +(y, z)) -> c_3(+^#(+(x, y), z))
     , +^#(O(x), O(y)) -> c_4(O^#(+(x, y)))
     , +^#(O(x), I(y)) -> c_5(+^#(x, y))
     , +^#(0(), x) -> c_6(x)
     , +^#(I(x), O(y)) -> c_7(+^#(x, y))
     , +^#(I(x), I(y)) -> c_8(O^#(+(+(x, y), I(0()))))
     , -^#(x, 0()) -> c_9(x)
     , -^#(O(x), O(y)) -> c_10(O^#(-(x, y)))
     , -^#(O(x), I(y)) -> c_11(-^#(-(x, y), I(1())))
     , -^#(0(), x) -> c_12()
     , -^#(I(x), O(y)) -> c_13(-^#(x, y))
     , -^#(I(x), I(y)) -> c_14(O^#(-(x, y)))
     , not^#(true()) -> c_15()
     , not^#(false()) -> c_16()
     , and^#(x, true()) -> c_17(x)
     , and^#(x, false()) -> c_18()
     , if^#(true(), x, y) -> c_19(x)
     , if^#(false(), x, y) -> c_20(y)
     , ge^#(x, 0()) -> c_21()
     , ge^#(O(x), O(y)) -> c_22(ge^#(x, y))
     , ge^#(O(x), I(y)) -> c_23(not^#(ge(y, x)))
     , ge^#(0(), O(x)) -> c_24(ge^#(0(), x))
     , ge^#(0(), I(x)) -> c_25()
     , ge^#(I(x), O(y)) -> c_26(ge^#(x, y))
     , ge^#(I(x), I(y)) -> c_27(ge^#(x, y))
     , Log'^#(O(x)) ->
       c_28(if^#(ge(x, I(0())), +(Log'(x), I(0())), 0()))
     , Log'^#(0()) -> c_29()
     , Log'^#(I(x)) -> c_30(+^#(Log'(x), I(0())))
     , Log^#(x) -> c_31(-^#(Log'(x), I(0())))
     , Val^#(L(x)) -> c_32(x)
     , Val^#(N(x, l(), r())) -> c_33(x)
     , Min^#(L(x)) -> c_34(x)
     , Min^#(N(x, l(), r())) -> c_35(Min^#(l()))
     , Max^#(L(x)) -> c_36(x)
     , Max^#(N(x, l(), r())) -> c_37(Max^#(r()))
     , BS^#(L(x)) -> c_38()
     , BS^#(N(x, l(), r())) ->
       c_39(and^#(and(ge(x, Max(l())), ge(Min(r()), x)),
                  and(BS(l()), BS(r()))))
     , Size^#(L(x)) -> c_40()
     , Size^#(N(x, l(), r())) ->
       c_41(+^#(+(Size(l()), Size(r())), I(1())))
     , WB^#(L(x)) -> c_42()
     , WB^#(N(x, l(), r())) ->
       c_43(and^#(if(ge(Size(l()), Size(r())),
                     ge(I(0()), -(Size(l()), Size(r()))),
                     ge(I(0()), -(Size(r()), Size(l())))),
                  and(WB(l()), WB(r())))) }
   
   and mark the set of starting terms.
   
   We are left with following problem, upon which TcT provides the
   certificate MAYBE.
   
   Strict DPs:
     { O^#(0()) -> c_1()
     , +^#(x, 0()) -> c_2(x)
     , +^#(x, +(y, z)) -> c_3(+^#(+(x, y), z))
     , +^#(O(x), O(y)) -> c_4(O^#(+(x, y)))
     , +^#(O(x), I(y)) -> c_5(+^#(x, y))
     , +^#(0(), x) -> c_6(x)
     , +^#(I(x), O(y)) -> c_7(+^#(x, y))
     , +^#(I(x), I(y)) -> c_8(O^#(+(+(x, y), I(0()))))
     , -^#(x, 0()) -> c_9(x)
     , -^#(O(x), O(y)) -> c_10(O^#(-(x, y)))
     , -^#(O(x), I(y)) -> c_11(-^#(-(x, y), I(1())))
     , -^#(0(), x) -> c_12()
     , -^#(I(x), O(y)) -> c_13(-^#(x, y))
     , -^#(I(x), I(y)) -> c_14(O^#(-(x, y)))
     , not^#(true()) -> c_15()
     , not^#(false()) -> c_16()
     , and^#(x, true()) -> c_17(x)
     , and^#(x, false()) -> c_18()
     , if^#(true(), x, y) -> c_19(x)
     , if^#(false(), x, y) -> c_20(y)
     , ge^#(x, 0()) -> c_21()
     , ge^#(O(x), O(y)) -> c_22(ge^#(x, y))
     , ge^#(O(x), I(y)) -> c_23(not^#(ge(y, x)))
     , ge^#(0(), O(x)) -> c_24(ge^#(0(), x))
     , ge^#(0(), I(x)) -> c_25()
     , ge^#(I(x), O(y)) -> c_26(ge^#(x, y))
     , ge^#(I(x), I(y)) -> c_27(ge^#(x, y))
     , Log'^#(O(x)) ->
       c_28(if^#(ge(x, I(0())), +(Log'(x), I(0())), 0()))
     , Log'^#(0()) -> c_29()
     , Log'^#(I(x)) -> c_30(+^#(Log'(x), I(0())))
     , Log^#(x) -> c_31(-^#(Log'(x), I(0())))
     , Val^#(L(x)) -> c_32(x)
     , Val^#(N(x, l(), r())) -> c_33(x)
     , Min^#(L(x)) -> c_34(x)
     , Min^#(N(x, l(), r())) -> c_35(Min^#(l()))
     , Max^#(L(x)) -> c_36(x)
     , Max^#(N(x, l(), r())) -> c_37(Max^#(r()))
     , BS^#(L(x)) -> c_38()
     , BS^#(N(x, l(), r())) ->
       c_39(and^#(and(ge(x, Max(l())), ge(Min(r()), x)),
                  and(BS(l()), BS(r()))))
     , Size^#(L(x)) -> c_40()
     , Size^#(N(x, l(), r())) ->
       c_41(+^#(+(Size(l()), Size(r())), I(1())))
     , WB^#(L(x)) -> c_42()
     , WB^#(N(x, l(), r())) ->
       c_43(and^#(if(ge(Size(l()), Size(r())),
                     ge(I(0()), -(Size(l()), Size(r()))),
                     ge(I(0()), -(Size(r()), Size(l())))),
                  and(WB(l()), WB(r())))) }
   Strict Trs:
     { O(0()) -> 0()
     , +(x, 0()) -> x
     , +(x, +(y, z)) -> +(+(x, y), z)
     , +(O(x), O(y)) -> O(+(x, y))
     , +(O(x), I(y)) -> I(+(x, y))
     , +(0(), x) -> x
     , +(I(x), O(y)) -> I(+(x, y))
     , +(I(x), I(y)) -> O(+(+(x, y), I(0())))
     , -(x, 0()) -> x
     , -(O(x), O(y)) -> O(-(x, y))
     , -(O(x), I(y)) -> I(-(-(x, y), I(1())))
     , -(0(), x) -> 0()
     , -(I(x), O(y)) -> I(-(x, y))
     , -(I(x), I(y)) -> O(-(x, y))
     , not(true()) -> false()
     , not(false()) -> true()
     , and(x, true()) -> x
     , and(x, false()) -> false()
     , if(true(), x, y) -> x
     , if(false(), x, y) -> y
     , ge(x, 0()) -> true()
     , ge(O(x), O(y)) -> ge(x, y)
     , ge(O(x), I(y)) -> not(ge(y, x))
     , ge(0(), O(x)) -> ge(0(), x)
     , ge(0(), I(x)) -> false()
     , ge(I(x), O(y)) -> ge(x, y)
     , ge(I(x), I(y)) -> ge(x, y)
     , Log'(O(x)) -> if(ge(x, I(0())), +(Log'(x), I(0())), 0())
     , Log'(0()) -> 0()
     , Log'(I(x)) -> +(Log'(x), I(0()))
     , Log(x) -> -(Log'(x), I(0()))
     , Val(L(x)) -> x
     , Val(N(x, l(), r())) -> x
     , Min(L(x)) -> x
     , Min(N(x, l(), r())) -> Min(l())
     , Max(L(x)) -> x
     , Max(N(x, l(), r())) -> Max(r())
     , BS(L(x)) -> true()
     , BS(N(x, l(), r())) ->
       and(and(ge(x, Max(l())), ge(Min(r()), x)), and(BS(l()), BS(r())))
     , Size(L(x)) -> I(0())
     , Size(N(x, l(), r())) -> +(+(Size(l()), Size(r())), I(1()))
     , WB(L(x)) -> true()
     , WB(N(x, l(), r())) ->
       and(if(ge(Size(l()), Size(r())),
              ge(I(0()), -(Size(l()), Size(r()))),
              ge(I(0()), -(Size(r()), Size(l())))),
           and(WB(l()), WB(r()))) }
   Obligation:
     runtime complexity
   Answer:
     MAYBE
   
   We estimate the number of application of
   {1,12,15,16,18,21,25,29,35,37,38,39,40,41,42,43} by applications of
   Pre({1,12,15,16,18,21,25,29,35,37,38,39,40,41,42,43}) =
   {2,4,6,8,9,10,11,13,14,17,19,20,22,23,24,26,27,31,32,33,34,36}.
   Here rules are labeled as follows:
   
     DPs:
       { 1: O^#(0()) -> c_1()
       , 2: +^#(x, 0()) -> c_2(x)
       , 3: +^#(x, +(y, z)) -> c_3(+^#(+(x, y), z))
       , 4: +^#(O(x), O(y)) -> c_4(O^#(+(x, y)))
       , 5: +^#(O(x), I(y)) -> c_5(+^#(x, y))
       , 6: +^#(0(), x) -> c_6(x)
       , 7: +^#(I(x), O(y)) -> c_7(+^#(x, y))
       , 8: +^#(I(x), I(y)) -> c_8(O^#(+(+(x, y), I(0()))))
       , 9: -^#(x, 0()) -> c_9(x)
       , 10: -^#(O(x), O(y)) -> c_10(O^#(-(x, y)))
       , 11: -^#(O(x), I(y)) -> c_11(-^#(-(x, y), I(1())))
       , 12: -^#(0(), x) -> c_12()
       , 13: -^#(I(x), O(y)) -> c_13(-^#(x, y))
       , 14: -^#(I(x), I(y)) -> c_14(O^#(-(x, y)))
       , 15: not^#(true()) -> c_15()
       , 16: not^#(false()) -> c_16()
       , 17: and^#(x, true()) -> c_17(x)
       , 18: and^#(x, false()) -> c_18()
       , 19: if^#(true(), x, y) -> c_19(x)
       , 20: if^#(false(), x, y) -> c_20(y)
       , 21: ge^#(x, 0()) -> c_21()
       , 22: ge^#(O(x), O(y)) -> c_22(ge^#(x, y))
       , 23: ge^#(O(x), I(y)) -> c_23(not^#(ge(y, x)))
       , 24: ge^#(0(), O(x)) -> c_24(ge^#(0(), x))
       , 25: ge^#(0(), I(x)) -> c_25()
       , 26: ge^#(I(x), O(y)) -> c_26(ge^#(x, y))
       , 27: ge^#(I(x), I(y)) -> c_27(ge^#(x, y))
       , 28: Log'^#(O(x)) ->
             c_28(if^#(ge(x, I(0())), +(Log'(x), I(0())), 0()))
       , 29: Log'^#(0()) -> c_29()
       , 30: Log'^#(I(x)) -> c_30(+^#(Log'(x), I(0())))
       , 31: Log^#(x) -> c_31(-^#(Log'(x), I(0())))
       , 32: Val^#(L(x)) -> c_32(x)
       , 33: Val^#(N(x, l(), r())) -> c_33(x)
       , 34: Min^#(L(x)) -> c_34(x)
       , 35: Min^#(N(x, l(), r())) -> c_35(Min^#(l()))
       , 36: Max^#(L(x)) -> c_36(x)
       , 37: Max^#(N(x, l(), r())) -> c_37(Max^#(r()))
       , 38: BS^#(L(x)) -> c_38()
       , 39: BS^#(N(x, l(), r())) ->
             c_39(and^#(and(ge(x, Max(l())), ge(Min(r()), x)),
                        and(BS(l()), BS(r()))))
       , 40: Size^#(L(x)) -> c_40()
       , 41: Size^#(N(x, l(), r())) ->
             c_41(+^#(+(Size(l()), Size(r())), I(1())))
       , 42: WB^#(L(x)) -> c_42()
       , 43: WB^#(N(x, l(), r())) ->
             c_43(and^#(if(ge(Size(l()), Size(r())),
                           ge(I(0()), -(Size(l()), Size(r()))),
                           ge(I(0()), -(Size(r()), Size(l())))),
                        and(WB(l()), WB(r())))) }
   
   We are left with following problem, upon which TcT provides the
   certificate MAYBE.
   
   Strict DPs:
     { +^#(x, 0()) -> c_2(x)
     , +^#(x, +(y, z)) -> c_3(+^#(+(x, y), z))
     , +^#(O(x), O(y)) -> c_4(O^#(+(x, y)))
     , +^#(O(x), I(y)) -> c_5(+^#(x, y))
     , +^#(0(), x) -> c_6(x)
     , +^#(I(x), O(y)) -> c_7(+^#(x, y))
     , +^#(I(x), I(y)) -> c_8(O^#(+(+(x, y), I(0()))))
     , -^#(x, 0()) -> c_9(x)
     , -^#(O(x), O(y)) -> c_10(O^#(-(x, y)))
     , -^#(O(x), I(y)) -> c_11(-^#(-(x, y), I(1())))
     , -^#(I(x), O(y)) -> c_13(-^#(x, y))
     , -^#(I(x), I(y)) -> c_14(O^#(-(x, y)))
     , and^#(x, true()) -> c_17(x)
     , if^#(true(), x, y) -> c_19(x)
     , if^#(false(), x, y) -> c_20(y)
     , ge^#(O(x), O(y)) -> c_22(ge^#(x, y))
     , ge^#(O(x), I(y)) -> c_23(not^#(ge(y, x)))
     , ge^#(0(), O(x)) -> c_24(ge^#(0(), x))
     , ge^#(I(x), O(y)) -> c_26(ge^#(x, y))
     , ge^#(I(x), I(y)) -> c_27(ge^#(x, y))
     , Log'^#(O(x)) ->
       c_28(if^#(ge(x, I(0())), +(Log'(x), I(0())), 0()))
     , Log'^#(I(x)) -> c_30(+^#(Log'(x), I(0())))
     , Log^#(x) -> c_31(-^#(Log'(x), I(0())))
     , Val^#(L(x)) -> c_32(x)
     , Val^#(N(x, l(), r())) -> c_33(x)
     , Min^#(L(x)) -> c_34(x)
     , Max^#(L(x)) -> c_36(x) }
   Strict Trs:
     { O(0()) -> 0()
     , +(x, 0()) -> x
     , +(x, +(y, z)) -> +(+(x, y), z)
     , +(O(x), O(y)) -> O(+(x, y))
     , +(O(x), I(y)) -> I(+(x, y))
     , +(0(), x) -> x
     , +(I(x), O(y)) -> I(+(x, y))
     , +(I(x), I(y)) -> O(+(+(x, y), I(0())))
     , -(x, 0()) -> x
     , -(O(x), O(y)) -> O(-(x, y))
     , -(O(x), I(y)) -> I(-(-(x, y), I(1())))
     , -(0(), x) -> 0()
     , -(I(x), O(y)) -> I(-(x, y))
     , -(I(x), I(y)) -> O(-(x, y))
     , not(true()) -> false()
     , not(false()) -> true()
     , and(x, true()) -> x
     , and(x, false()) -> false()
     , if(true(), x, y) -> x
     , if(false(), x, y) -> y
     , ge(x, 0()) -> true()
     , ge(O(x), O(y)) -> ge(x, y)
     , ge(O(x), I(y)) -> not(ge(y, x))
     , ge(0(), O(x)) -> ge(0(), x)
     , ge(0(), I(x)) -> false()
     , ge(I(x), O(y)) -> ge(x, y)
     , ge(I(x), I(y)) -> ge(x, y)
     , Log'(O(x)) -> if(ge(x, I(0())), +(Log'(x), I(0())), 0())
     , Log'(0()) -> 0()
     , Log'(I(x)) -> +(Log'(x), I(0()))
     , Log(x) -> -(Log'(x), I(0()))
     , Val(L(x)) -> x
     , Val(N(x, l(), r())) -> x
     , Min(L(x)) -> x
     , Min(N(x, l(), r())) -> Min(l())
     , Max(L(x)) -> x
     , Max(N(x, l(), r())) -> Max(r())
     , BS(L(x)) -> true()
     , BS(N(x, l(), r())) ->
       and(and(ge(x, Max(l())), ge(Min(r()), x)), and(BS(l()), BS(r())))
     , Size(L(x)) -> I(0())
     , Size(N(x, l(), r())) -> +(+(Size(l()), Size(r())), I(1()))
     , WB(L(x)) -> true()
     , WB(N(x, l(), r())) ->
       and(if(ge(Size(l()), Size(r())),
              ge(I(0()), -(Size(l()), Size(r()))),
              ge(I(0()), -(Size(r()), Size(l())))),
           and(WB(l()), WB(r()))) }
   Weak DPs:
     { O^#(0()) -> c_1()
     , -^#(0(), x) -> c_12()
     , not^#(true()) -> c_15()
     , not^#(false()) -> c_16()
     , and^#(x, false()) -> c_18()
     , ge^#(x, 0()) -> c_21()
     , ge^#(0(), I(x)) -> c_25()
     , Log'^#(0()) -> c_29()
     , Min^#(N(x, l(), r())) -> c_35(Min^#(l()))
     , Max^#(N(x, l(), r())) -> c_37(Max^#(r()))
     , BS^#(L(x)) -> c_38()
     , BS^#(N(x, l(), r())) ->
       c_39(and^#(and(ge(x, Max(l())), ge(Min(r()), x)),
                  and(BS(l()), BS(r()))))
     , Size^#(L(x)) -> c_40()
     , Size^#(N(x, l(), r())) ->
       c_41(+^#(+(Size(l()), Size(r())), I(1())))
     , WB^#(L(x)) -> c_42()
     , WB^#(N(x, l(), r())) ->
       c_43(and^#(if(ge(Size(l()), Size(r())),
                     ge(I(0()), -(Size(l()), Size(r()))),
                     ge(I(0()), -(Size(r()), Size(l())))),
                  and(WB(l()), WB(r())))) }
   Obligation:
     runtime complexity
   Answer:
     MAYBE
   
   We estimate the number of application of {3,7,9,12,17} by
   applications of Pre({3,7,9,12,17}) =
   {1,2,4,5,6,8,10,11,13,14,15,16,19,20,22,23,24,25,26,27}. Here rules
   are labeled as follows:
   
     DPs:
       { 1: +^#(x, 0()) -> c_2(x)
       , 2: +^#(x, +(y, z)) -> c_3(+^#(+(x, y), z))
       , 3: +^#(O(x), O(y)) -> c_4(O^#(+(x, y)))
       , 4: +^#(O(x), I(y)) -> c_5(+^#(x, y))
       , 5: +^#(0(), x) -> c_6(x)
       , 6: +^#(I(x), O(y)) -> c_7(+^#(x, y))
       , 7: +^#(I(x), I(y)) -> c_8(O^#(+(+(x, y), I(0()))))
       , 8: -^#(x, 0()) -> c_9(x)
       , 9: -^#(O(x), O(y)) -> c_10(O^#(-(x, y)))
       , 10: -^#(O(x), I(y)) -> c_11(-^#(-(x, y), I(1())))
       , 11: -^#(I(x), O(y)) -> c_13(-^#(x, y))
       , 12: -^#(I(x), I(y)) -> c_14(O^#(-(x, y)))
       , 13: and^#(x, true()) -> c_17(x)
       , 14: if^#(true(), x, y) -> c_19(x)
       , 15: if^#(false(), x, y) -> c_20(y)
       , 16: ge^#(O(x), O(y)) -> c_22(ge^#(x, y))
       , 17: ge^#(O(x), I(y)) -> c_23(not^#(ge(y, x)))
       , 18: ge^#(0(), O(x)) -> c_24(ge^#(0(), x))
       , 19: ge^#(I(x), O(y)) -> c_26(ge^#(x, y))
       , 20: ge^#(I(x), I(y)) -> c_27(ge^#(x, y))
       , 21: Log'^#(O(x)) ->
             c_28(if^#(ge(x, I(0())), +(Log'(x), I(0())), 0()))
       , 22: Log'^#(I(x)) -> c_30(+^#(Log'(x), I(0())))
       , 23: Log^#(x) -> c_31(-^#(Log'(x), I(0())))
       , 24: Val^#(L(x)) -> c_32(x)
       , 25: Val^#(N(x, l(), r())) -> c_33(x)
       , 26: Min^#(L(x)) -> c_34(x)
       , 27: Max^#(L(x)) -> c_36(x)
       , 28: O^#(0()) -> c_1()
       , 29: -^#(0(), x) -> c_12()
       , 30: not^#(true()) -> c_15()
       , 31: not^#(false()) -> c_16()
       , 32: and^#(x, false()) -> c_18()
       , 33: ge^#(x, 0()) -> c_21()
       , 34: ge^#(0(), I(x)) -> c_25()
       , 35: Log'^#(0()) -> c_29()
       , 36: Min^#(N(x, l(), r())) -> c_35(Min^#(l()))
       , 37: Max^#(N(x, l(), r())) -> c_37(Max^#(r()))
       , 38: BS^#(L(x)) -> c_38()
       , 39: BS^#(N(x, l(), r())) ->
             c_39(and^#(and(ge(x, Max(l())), ge(Min(r()), x)),
                        and(BS(l()), BS(r()))))
       , 40: Size^#(L(x)) -> c_40()
       , 41: Size^#(N(x, l(), r())) ->
             c_41(+^#(+(Size(l()), Size(r())), I(1())))
       , 42: WB^#(L(x)) -> c_42()
       , 43: WB^#(N(x, l(), r())) ->
             c_43(and^#(if(ge(Size(l()), Size(r())),
                           ge(I(0()), -(Size(l()), Size(r()))),
                           ge(I(0()), -(Size(r()), Size(l())))),
                        and(WB(l()), WB(r())))) }
   
   We are left with following problem, upon which TcT provides the
   certificate MAYBE.
   
   Strict DPs:
     { +^#(x, 0()) -> c_2(x)
     , +^#(x, +(y, z)) -> c_3(+^#(+(x, y), z))
     , +^#(O(x), I(y)) -> c_5(+^#(x, y))
     , +^#(0(), x) -> c_6(x)
     , +^#(I(x), O(y)) -> c_7(+^#(x, y))
     , -^#(x, 0()) -> c_9(x)
     , -^#(O(x), I(y)) -> c_11(-^#(-(x, y), I(1())))
     , -^#(I(x), O(y)) -> c_13(-^#(x, y))
     , and^#(x, true()) -> c_17(x)
     , if^#(true(), x, y) -> c_19(x)
     , if^#(false(), x, y) -> c_20(y)
     , ge^#(O(x), O(y)) -> c_22(ge^#(x, y))
     , ge^#(0(), O(x)) -> c_24(ge^#(0(), x))
     , ge^#(I(x), O(y)) -> c_26(ge^#(x, y))
     , ge^#(I(x), I(y)) -> c_27(ge^#(x, y))
     , Log'^#(O(x)) ->
       c_28(if^#(ge(x, I(0())), +(Log'(x), I(0())), 0()))
     , Log'^#(I(x)) -> c_30(+^#(Log'(x), I(0())))
     , Log^#(x) -> c_31(-^#(Log'(x), I(0())))
     , Val^#(L(x)) -> c_32(x)
     , Val^#(N(x, l(), r())) -> c_33(x)
     , Min^#(L(x)) -> c_34(x)
     , Max^#(L(x)) -> c_36(x) }
   Strict Trs:
     { O(0()) -> 0()
     , +(x, 0()) -> x
     , +(x, +(y, z)) -> +(+(x, y), z)
     , +(O(x), O(y)) -> O(+(x, y))
     , +(O(x), I(y)) -> I(+(x, y))
     , +(0(), x) -> x
     , +(I(x), O(y)) -> I(+(x, y))
     , +(I(x), I(y)) -> O(+(+(x, y), I(0())))
     , -(x, 0()) -> x
     , -(O(x), O(y)) -> O(-(x, y))
     , -(O(x), I(y)) -> I(-(-(x, y), I(1())))
     , -(0(), x) -> 0()
     , -(I(x), O(y)) -> I(-(x, y))
     , -(I(x), I(y)) -> O(-(x, y))
     , not(true()) -> false()
     , not(false()) -> true()
     , and(x, true()) -> x
     , and(x, false()) -> false()
     , if(true(), x, y) -> x
     , if(false(), x, y) -> y
     , ge(x, 0()) -> true()
     , ge(O(x), O(y)) -> ge(x, y)
     , ge(O(x), I(y)) -> not(ge(y, x))
     , ge(0(), O(x)) -> ge(0(), x)
     , ge(0(), I(x)) -> false()
     , ge(I(x), O(y)) -> ge(x, y)
     , ge(I(x), I(y)) -> ge(x, y)
     , Log'(O(x)) -> if(ge(x, I(0())), +(Log'(x), I(0())), 0())
     , Log'(0()) -> 0()
     , Log'(I(x)) -> +(Log'(x), I(0()))
     , Log(x) -> -(Log'(x), I(0()))
     , Val(L(x)) -> x
     , Val(N(x, l(), r())) -> x
     , Min(L(x)) -> x
     , Min(N(x, l(), r())) -> Min(l())
     , Max(L(x)) -> x
     , Max(N(x, l(), r())) -> Max(r())
     , BS(L(x)) -> true()
     , BS(N(x, l(), r())) ->
       and(and(ge(x, Max(l())), ge(Min(r()), x)), and(BS(l()), BS(r())))
     , Size(L(x)) -> I(0())
     , Size(N(x, l(), r())) -> +(+(Size(l()), Size(r())), I(1()))
     , WB(L(x)) -> true()
     , WB(N(x, l(), r())) ->
       and(if(ge(Size(l()), Size(r())),
              ge(I(0()), -(Size(l()), Size(r()))),
              ge(I(0()), -(Size(r()), Size(l())))),
           and(WB(l()), WB(r()))) }
   Weak DPs:
     { O^#(0()) -> c_1()
     , +^#(O(x), O(y)) -> c_4(O^#(+(x, y)))
     , +^#(I(x), I(y)) -> c_8(O^#(+(+(x, y), I(0()))))
     , -^#(O(x), O(y)) -> c_10(O^#(-(x, y)))
     , -^#(0(), x) -> c_12()
     , -^#(I(x), I(y)) -> c_14(O^#(-(x, y)))
     , not^#(true()) -> c_15()
     , not^#(false()) -> c_16()
     , and^#(x, false()) -> c_18()
     , ge^#(x, 0()) -> c_21()
     , ge^#(O(x), I(y)) -> c_23(not^#(ge(y, x)))
     , ge^#(0(), I(x)) -> c_25()
     , Log'^#(0()) -> c_29()
     , Min^#(N(x, l(), r())) -> c_35(Min^#(l()))
     , Max^#(N(x, l(), r())) -> c_37(Max^#(r()))
     , BS^#(L(x)) -> c_38()
     , BS^#(N(x, l(), r())) ->
       c_39(and^#(and(ge(x, Max(l())), ge(Min(r()), x)),
                  and(BS(l()), BS(r()))))
     , Size^#(L(x)) -> c_40()
     , Size^#(N(x, l(), r())) ->
       c_41(+^#(+(Size(l()), Size(r())), I(1())))
     , WB^#(L(x)) -> c_42()
     , WB^#(N(x, l(), r())) ->
       c_43(and^#(if(ge(Size(l()), Size(r())),
                     ge(I(0()), -(Size(l()), Size(r()))),
                     ge(I(0()), -(Size(r()), Size(l())))),
                  and(WB(l()), WB(r())))) }
   Obligation:
     runtime complexity
   Answer:
     MAYBE
   
   Empty strict component of the problem is NOT empty.


Arrrr..