section ‹Immutable Arrays with Code Generation›
theory IArray
imports Main
begin
subsection ‹Fundamental operations›
text ‹Immutable arrays are lists wrapped up in an additional constructor.
There are no update operations. Hence code generation can safely implement
this type by efficient target language arrays. Currently only SML is
provided. Could be extended to other target languages and more operations.›
context
begin
datatype 'a iarray = IArray "'a list"
qualified primrec list_of :: "'a iarray ⇒ 'a list" where
"list_of (IArray xs) = xs"
qualified definition of_fun :: "(nat ⇒ 'a) ⇒ nat ⇒ 'a iarray" where
[simp]: "of_fun f n = IArray (map f [0..<n])"
qualified definition sub :: "'a iarray ⇒ nat ⇒ 'a" (infixl "!!" 100) where
[simp]: "as !! n = IArray.list_of as ! n"
qualified definition length :: "'a iarray ⇒ nat" where
[simp]: "length as = List.length (IArray.list_of as)"
qualified definition all :: "('a ⇒ bool) ⇒ 'a iarray ⇒ bool" where
[simp]: "all p as ⟷ (∀a ∈ set (list_of as). p a)"
qualified definition exists :: "('a ⇒ bool) ⇒ 'a iarray ⇒ bool" where
[simp]: "exists p as ⟷ (∃a ∈ set (list_of as). p a)"
lemma of_fun_nth:
"IArray.of_fun f n !! i = f i" if "i < n"
using that by (simp add: map_nth)
end
subsection ‹Generic code equations›
lemma [code]:
"size (as :: 'a iarray) = Suc (IArray.length as)"
by (cases as) simp
lemma [code]:
"size_iarray f as = Suc (size_list f (IArray.list_of as))"
by (cases as) simp
lemma [code]:
"rec_iarray f as = f (IArray.list_of as)"
by (cases as) simp
lemma [code]:
"case_iarray f as = f (IArray.list_of as)"
by (cases as) simp
lemma [code]:
"set_iarray as = set (IArray.list_of as)"
by (cases as) auto
lemma [code]:
"map_iarray f as = IArray (map f (IArray.list_of as))"
by (cases as) auto
lemma [code]:
"rel_iarray r as bs = list_all2 r (IArray.list_of as) (IArray.list_of bs)"
by (cases as, cases bs) auto
lemma list_of_code [code]:
"IArray.list_of as = map (λn. as !! n) [0 ..< IArray.length as]"
by (cases as) (simp add: map_nth)
lemma [code]:
"HOL.equal as bs ⟷ HOL.equal (IArray.list_of as) (IArray.list_of bs)"
by (cases as, cases bs) (simp add: equal)
lemma [code]:
"IArray.all p = Not ∘ IArray.exists (Not ∘ p)"
by (simp add: fun_eq_iff)
context term_syntax
begin
lemma [code]:
"Code_Evaluation.term_of (as :: 'a::typerep iarray) =
Code_Evaluation.Const (STR ''IArray.iarray.IArray'') (TYPEREP('a list ⇒ 'a iarray)) <⋅> (Code_Evaluation.term_of (IArray.list_of as))"
by (subst term_of_anything) rule
end
subsection ‹Auxiliary operations for code generation›
context
begin
qualified primrec tabulate :: "integer × (integer ⇒ 'a) ⇒ 'a iarray" where
"tabulate (n, f) = IArray (map (f ∘ integer_of_nat) [0..<nat_of_integer n])"
lemma [code]:
"IArray.of_fun f n = IArray.tabulate (integer_of_nat n, f ∘ nat_of_integer)"
by simp
qualified primrec sub' :: "'a iarray × integer ⇒ 'a" where
"sub' (as, n) = as !! nat_of_integer n"
lemma [code]:
"IArray.sub' (IArray as, n) = as ! nat_of_integer n"
by simp
lemma [code]:
"as !! n = IArray.sub' (as, integer_of_nat n)"
by simp
qualified definition length' :: "'a iarray ⇒ integer" where
[simp]: "length' as = integer_of_nat (List.length (IArray.list_of as))"
lemma [code]:
"IArray.length' (IArray as) = integer_of_nat (List.length as)"
by simp
lemma [code]:
"IArray.length as = nat_of_integer (IArray.length' as)"
by simp
qualified definition exists_upto :: "('a ⇒ bool) ⇒ integer ⇒ 'a iarray ⇒ bool" where
[simp]: "exists_upto p k as ⟷ (∃l. 0 ≤ l ∧ l < k ∧ p (sub' (as, l)))"
lemma exists_upto_of_nat:
"exists_upto p (of_nat n) as ⟷ (∃m<n. p (as !! m))"
including integer.lifting by (simp, transfer)
(metis nat_int nat_less_iff of_nat_0_le_iff)
lemma [code]:
"exists_upto p k as ⟷ (if k ≤ 0 then False else
let l = k - 1 in p (sub' (as, l)) ∨ exists_upto p l as)"
proof (cases "k ≥ 1")
case False
then show ?thesis
by (auto simp add: not_le discrete)
next
case True
then have less: "k ≤ 0 ⟷ False"
by simp
define n where "n = nat_of_integer (k - 1)"
with True have k: "k - 1 = of_nat n" "k = of_nat (Suc n)"
by simp_all
show ?thesis unfolding less Let_def k(1) unfolding k(2) exists_upto_of_nat
using less_Suc_eq by auto
qed
lemma [code]:
"IArray.exists p as ⟷ exists_upto p (length' as) as"
including integer.lifting by (simp, transfer)
(auto, metis in_set_conv_nth less_imp_of_nat_less nat_int of_nat_0_le_iff)
end
subsection ‹Code Generation for SML›
text ‹Note that arrays cannot be printed directly but only by turning them into
lists first. Arrays could be converted back into lists for printing if they
were wrapped up in an additional constructor.›
code_reserved SML Vector
code_printing
type_constructor iarray ⇀ (SML) "_ Vector.vector"
| constant IArray ⇀ (SML) "Vector.fromList"
| constant IArray.all ⇀ (SML) "Vector.all"
| constant IArray.exists ⇀ (SML) "Vector.exists"
| constant IArray.tabulate ⇀ (SML) "Vector.tabulate"
| constant IArray.sub' ⇀ (SML) "Vector.sub"
| constant IArray.length' ⇀ (SML) "Vector.length"
subsection ‹Code Generation for Haskell›
text ‹We map @{typ "'a iarray"}s in Isabelle/HOL to @{text Data.Array.IArray.array}
in Haskell. Performance mapping to @{text Data.Array.Unboxed.Array} and
@{text Data.Array.Array} is similar.›
code_printing
code_module "IArray" ⇀ (Haskell) ‹
import Prelude (Bool(True, False), not, Maybe(Nothing, Just),
Integer, (+), (-), (<), fromInteger, toInteger, map, seq, (.));
import qualified Prelude;
import qualified Data.Array.IArray;
import qualified Data.Array.Base;
import qualified Data.Ix;
newtype IArray e = IArray (Data.Array.IArray.Array Integer e);
tabulate :: (Integer, (Integer -> e)) -> IArray e;
tabulate (k, f) = IArray (Data.Array.IArray.array (0, k - 1) (map (\i -> let fi = f i in fi `seq` (i, fi)) [0..k - 1]));
of_list :: [e] -> IArray e;
of_list l = IArray (Data.Array.IArray.listArray (0, (toInteger . Prelude.length) l - 1) l);
sub :: (IArray e, Integer) -> e;
sub (IArray v, i) = v `Data.Array.Base.unsafeAt` fromInteger i;
length :: IArray e -> Integer;
length (IArray v) = toInteger (Data.Ix.rangeSize (Data.Array.IArray.bounds v));›
code_reserved Haskell IArray_Impl
code_printing
type_constructor iarray ⇀ (Haskell) "IArray.IArray _"
| constant IArray ⇀ (Haskell) "IArray.of'_list"
| constant IArray.tabulate ⇀ (Haskell) "IArray.tabulate"
| constant IArray.sub' ⇀ (Haskell) "IArray.sub"
| constant IArray.length' ⇀ (Haskell) "IArray.length"
end