section ‹\isaheader{The type of associative lists}› theory Assoc_List imports "HOL-Library.AList" "../Iterator/SetIteratorOperations" begin subsection ‹Type ‹('a, 'b) assoc_list›› typedef ('k, 'v) assoc_list = "{xs :: ('k × 'v) list. distinct (map fst xs)}" morphisms impl_of Assoc_List by(rule exI[where x="[]"]) simp lemma assoc_list_ext: "impl_of xs = impl_of ys ⟹ xs = ys" by(simp add: impl_of_inject) lemma expand_assoc_list_eq: "xs = ys ⟷ impl_of xs = impl_of ys" by(simp add: impl_of_inject) lemma impl_of_distinct [simp, intro]: "distinct (map fst (impl_of al))" using impl_of[of al] by simp lemma impl_of_distinct_full [simp, intro]: "distinct (impl_of al)" using impl_of_distinct[of al] unfolding distinct_map by simp lemma Assoc_List_impl_of [code abstype]: "Assoc_List (impl_of al) = al" by(rule impl_of_inverse) subsection ‹Primitive operations› definition empty :: "('k, 'v) assoc_list" where [code del]: "empty = Assoc_List []" definition lookup :: "('k, 'v) assoc_list ⇒ 'k ⇒ 'v option" where [code]: "lookup al = map_of (impl_of al)" definition update_with :: "'v ⇒ 'k ⇒ ('v ⇒ 'v) ⇒ ('k, 'v) assoc_list ⇒ ('k, 'v) assoc_list" where [code del]: "update_with v k f al = Assoc_List (AList.update_with_aux v k f (impl_of al))" definition delete :: "'k ⇒ ('k, 'v) assoc_list ⇒ ('k, 'v) assoc_list" where [code del]: "delete k al = Assoc_List (AList.delete_aux k (impl_of al))" definition iteratei :: "('k, 'v) assoc_list ⇒ ('s⇒bool) ⇒ ('k × 'v ⇒ 's ⇒ 's) ⇒ 's ⇒ 's" where [code]: "iteratei al c f = foldli (impl_of al) c f" lemma impl_of_empty [code abstract]: "impl_of empty = []" by(simp add: empty_def Assoc_List_inverse) lemma impl_of_update_with [code abstract]: "impl_of (update_with v k f al) = AList.update_with_aux v k f (impl_of al)" by(simp add: update_with_def Assoc_List_inverse) lemma impl_of_delete [code abstract]: "impl_of (delete k al) = AList.delete_aux k (impl_of al)" by(simp add: delete_def Assoc_List_inverse) subsection ‹Abstract operation properties› lemma lookup_empty [simp]: "lookup empty k = None" by(simp add: empty_def lookup_def Assoc_List_inverse) lemma lookup_empty': "lookup empty = Map.empty" by(rule ext) simp lemma lookup_update_with [simp]: "lookup (update_with v k f al) = (lookup al)(k ↦ case lookup al k of None ⇒ f v | Some v ⇒ f v)" by(simp add: lookup_def update_with_def Assoc_List_inverse map_of_update_with_aux) lemma lookup_delete [simp]: "lookup (delete k al) = (lookup al)(k := None)" by(simp add: lookup_def delete_def Assoc_List_inverse distinct_delete map_of_delete_aux') lemma finite_dom_lookup [simp, intro!]: "finite (dom (lookup m))" by(simp add: lookup_def finite_dom_map_of) lemma iteratei_correct: "map_iterator (iteratei m) (lookup m)" unfolding iteratei_def[abs_def] lookup_def map_to_set_def by (simp add: set_iterator_foldli_correct) subsection ‹Derived operations› definition update :: "'key ⇒ 'val ⇒ ('key, 'val) assoc_list ⇒ ('key, 'val) assoc_list" where "update k v = update_with v k (λ_. v)" definition set :: "('key, 'val) assoc_list ⇒ ('key × 'val) set" where "set al = List.set (impl_of al)" lemma lookup_update [simp]: "lookup (update k v al) = (lookup al)(k ↦ v)" by(simp add: update_def split: option.split) lemma set_empty [simp]: "set empty = {}" by(simp add: set_def empty_def Assoc_List_inverse) lemma set_update_with: "set (update_with v k f al) = (set al - {k} × UNIV ∪ {(k, f (case lookup al k of None ⇒ v | Some v ⇒ v))})" by(simp add: set_def update_with_def Assoc_List_inverse set_update_with_aux lookup_def) lemma set_update: "set (update k v al) = (set al - {k} × UNIV ∪ {(k, v)})" by(simp add: update_def set_update_with) lemma set_delete: "set (delete k al) = set al - {k} × UNIV" by(simp add: set_def delete_def Assoc_List_inverse set_delete_aux) subsection ‹Type classes› instantiation assoc_list :: (equal, equal) equal begin definition "equal_class.equal (al :: ('a, 'b) assoc_list) al' == impl_of al = impl_of al'" instance proof qed (simp add: equal_assoc_list_def impl_of_inject) end instantiation assoc_list :: (type, type) size begin definition "size (al :: ('a, 'b) assoc_list) = length (impl_of al)" instance .. end hide_const (open) impl_of empty lookup update_with set update delete iteratei subsection ‹@{const map_ran}› text ‹@{term map_ran} with more general type - lemmas replicated from AList in HOL/Library› hide_const (open) map_ran primrec map_ran :: "('key ⇒ 'val ⇒ 'val') ⇒ ('key × 'val) list ⇒ ('key × 'val') list" where "map_ran f [] = []" | "map_ran f (p#ps) = (fst p, f (fst p) (snd p)) # map_ran f ps" lemma map_ran_conv: "map_of (map_ran f al) k = map_option (f k) (map_of al k)" by (induct al) auto lemma dom_map_ran: "fst ` set (map_ran f al) = fst ` set al" by (induct al) auto lemma distinct_map_ran: "distinct (map fst al) ⟹ distinct (map fst (map_ran f al))" by (induct al) (auto simp add: dom_map_ran) lemma map_ran_filter: "map_ran f [(a, _)←ps. fst p ≠ a] = [(a, _)←map_ran f ps. fst p ≠ a]" by (induct ps) auto lemma clearjunk_map_ran: "AList.clearjunk (map_ran f al) = map_ran f (AList.clearjunk al)" by (induct al rule: clearjunk.induct) (simp_all add: AList.delete_eq map_ran_filter) text ‹new lemmas and definitions› lemma map_ran_cong [fundef_cong]: "⟦ al = al'; ⋀k v. (k, v) ∈ set al ⟹ f k v = g k v ⟧ ⟹ map_ran f al = map_ran g al'" by hypsubst_thin (induct al', auto) lemma size_list_delete: "size_list f (AList.delete a al) ≤ size_list f al" by(induct al) simp_all lemma size_list_clearjunk: "size_list f (AList.clearjunk al) ≤ size_list f al" by(induct al)(auto simp add: clearjunk_delete intro: le_trans[OF size_list_delete]) lemma set_delete_conv: "set (AList.delete a al) = set al - ({a} × UNIV)" proof(induct al) case (Cons kv al) thus ?case by(cases kv) auto qed simp lemma set_clearjunk_subset: "set (AList.clearjunk al) ⊆ set al" by(induct al)(auto simp add: clearjunk_delete set_delete_conv) lemma map_ran_conv_map: "map_ran f xs = map (λ(k, v). (k, f k v)) xs" by(induct xs) auto lemma card_dom_map_of: "distinct (map fst al) ⟹ card (dom (map_of al)) = length al" by(induct al)(auto simp add: card_insert_if finite_dom_map_of dom_map_of_conv_image_fst) lemma map_of_map_inj_fst: assumes "inj f" shows "map_of (map (λ(k, v). (f k, v)) xs) (f x) = map_of xs x" by(induct xs)(auto dest: injD[OF ‹inj f›]) lemma length_map_ran [simp]: "length (map_ran f xs) = length xs" by(induct xs) simp_all lemma length_update: "length (AList.update k v xs) = (if k ∈ fst ` set xs then length xs else Suc (length xs))" by(induct xs) simp_all lemma length_distinct: "distinct (map fst xs) ⟹ length (AList.delete k xs) = (if k ∈ fst ` set xs then length xs - 1 else length xs)" by(induct xs)(auto split: if_split_asm simp add: in_set_conv_nth) lemma finite_Assoc_List_set_image: assumes "finite (Assoc_List.set ` A)" shows "finite A" proof - have "Assoc_List.set ` A = set ` Assoc_List.impl_of ` A" by (auto simp add: Assoc_List.set_def) with assms finite_set_image have "finite (Assoc_List.impl_of ` A)" by auto with assoc_list_ext show ?thesis by (metis inj_onI finite_imageD) qed end