section ‹Set by Characteristic Function› theory Impl_Cfun_Set imports "../Intf/Intf_Set" begin definition fun_set_rel where fun_set_rel_internal_def: "fun_set_rel R ≡ (R→bool_rel) O br Collect (λ_. True)" lemma fun_set_rel_def: "⟨R⟩fun_set_rel = (R→bool_rel) O br Collect (λ_. True)" by (simp add: relAPP_def fun_set_rel_internal_def) lemma fun_set_rel_sv[relator_props]: "⟦single_valued R; Range R = UNIV⟧ ⟹ single_valued (⟨R⟩fun_set_rel)" unfolding fun_set_rel_def by (tagged_solver (keep)) lemma fun_set_rel_RUNIV[relator_props]: assumes SV: "single_valued R" shows "Range (⟨R⟩fun_set_rel) = UNIV" proof - { fix b have "∃a. (a,b)∈⟨R⟩fun_set_rel" unfolding fun_set_rel_def apply (rule exI) apply (rule relcompI) proof - show "((λx. x∈b),b)∈br Collect (λ_. True)" by (auto simp: br_def) show "(λx'. ∃x. (x',x)∈R ∧ x∈b,λx. x ∈ b)∈R → bool_rel" by (auto dest: single_valuedD[OF SV]) qed } thus ?thesis by blast qed lemmas [autoref_rel_intf] = REL_INTFI[of fun_set_rel i_set] lemma fs_mem_refine[autoref_rules]: "(λx f. f x,(∈)) ∈ R → ⟨R⟩fun_set_rel → bool_rel" apply (intro fun_relI) apply (auto simp add: fun_set_rel_def br_def dest: fun_relD) done lemma fun_set_Collect_refine[autoref_rules]: "(λx. x, Collect)∈(R→bool_rel) → ⟨R⟩fun_set_rel" unfolding fun_set_rel_def by (auto simp: br_def) lemma fun_set_empty_refine[autoref_rules]: "(λ_. False,{})∈⟨R⟩fun_set_rel" by (force simp add: fun_set_rel_def br_def) lemma fun_set_UNIV_refine[autoref_rules]: "(λ_. True,UNIV)∈⟨R⟩fun_set_rel" by (force simp add: fun_set_rel_def br_def) lemma fun_set_union_refine[autoref_rules]: "(λa b x. a x ∨ b x,(∪))∈⟨R⟩fun_set_rel → ⟨R⟩fun_set_rel → ⟨R⟩fun_set_rel" proof - have A: "⋀a b. (λx. x∈a ∨ x∈b, a ∪ b) ∈ br Collect (λ_. True)" by (auto simp: br_def) show ?thesis apply (simp add: fun_set_rel_def) apply (intro fun_relI) apply clarsimp apply rule defer apply (rule A) apply (auto simp: br_def dest: fun_relD) done qed lemma fun_set_inter_refine[autoref_rules]: "(λa b x. a x ∧ b x,(∩))∈⟨R⟩fun_set_rel → ⟨R⟩fun_set_rel → ⟨R⟩fun_set_rel" proof - have A: "⋀a b. (λx. x∈a ∧ x∈b, a ∩ b) ∈ br Collect (λ_. True)" by (auto simp: br_def) show ?thesis apply (simp add: fun_set_rel_def) apply (intro fun_relI) apply clarsimp apply rule defer apply (rule A) apply (auto simp: br_def dest: fun_relD) done qed lemma fun_set_diff_refine[autoref_rules]: "(λa b x. a x ∧ ¬b x,(-))∈⟨R⟩fun_set_rel → ⟨R⟩fun_set_rel → ⟨R⟩fun_set_rel" proof - have A: "⋀a b. (λx. x∈a ∧ ¬x∈b, a - b) ∈ br Collect (λ_. True)" by (auto simp: br_def) show ?thesis apply (simp add: fun_set_rel_def) apply (intro fun_relI) apply clarsimp apply rule defer apply (rule A) apply (auto simp: br_def dest: fun_relD) done qed end