by AProVE
f1_0_main_Load | 1 | f274_0_power_LE: | x1 = _arg1 ∧ x2 = _arg2 ∧ x1 = _arg1P ∧ x2 = _arg2P ∧ −1 ≤ _arg2 − 1 ∧ 1 ≤ _arg1P − 1 ∧ _x3 ≤ 1 ∧ −1 ≤ _x3 − 1 ∧ 0 ≤ _arg1 − 1 | |
f1_0_main_Load | 2 | f274_0_power_LE: | x1 = _x ∧ x2 = _x1 ∧ x1 = _x2 ∧ x2 = _x4 ∧ −1 ≤ _x1 − 1 ∧ 1 ≤ _x2 − 1 ∧ 2 ≤ _x5 − 1 ∧ 0 ≤ _x − 1 | |
f274_0_power_LE | 3 | f274_0_power_LE': | x1 = _x6 ∧ x2 = _x8 ∧ x1 = _x9 ∧ x2 = _x10 ∧ _x6 − 2⋅_x13 = 0 ∧ _x14 ≤ _x6 − 1 ∧ 0 ≤ _x6 − 1 ∧ _x6 = _x9 | |
f274_0_power_LE' | 4 | f274_0_power_LE: | x1 = _x16 ∧ x2 = _x19 ∧ x1 = _x20 ∧ x2 = _x22 ∧ _x16 − 2⋅_x23 = 0 ∧ 0 ≤ _x16 − 1 ∧ _x20 ≤ _x16 − 1 ∧ 0 ≤ _x16 − 2⋅_x23 ∧ _x16 − 2⋅_x23 ≤ 1 ∧ _x16 − 2⋅_x20 ≤ 1 ∧ 0 ≤ _x16 − 2⋅_x20 | |
f274_0_power_LE | 5 | f274_0_power_LE': | x1 = _x24 ∧ x2 = _x25 ∧ x1 = _x26 ∧ x2 = _x27 ∧ _x24 − 2⋅_x28 = 1 ∧ _x29 ≤ _x24 − 1 ∧ 0 ≤ _x24 − 1 ∧ _x24 = _x26 | |
f274_0_power_LE' | 6 | f274_0_power_LE: | x1 = _x30 ∧ x2 = _x31 ∧ x1 = _x32 ∧ x2 = _x33 ∧ _x30 − 2⋅_x34 = 1 ∧ 0 ≤ _x30 − 1 ∧ _x32 ≤ _x30 − 1 ∧ 0 ≤ _x30 − 2⋅_x34 ∧ _x30 − 2⋅_x34 ≤ 1 ∧ _x30 − 2⋅_x32 ≤ 1 ∧ 0 ≤ _x30 − 2⋅_x32 | |
__init | 7 | f1_0_main_Load: | x1 = _x35 ∧ x2 = _x36 ∧ x1 = _x37 ∧ x2 = _x38 ∧ 0 ≤ 0 |
f274_0_power_LE | f274_0_power_LE | : | x1 = x1 ∧ x2 = x2 |
f1_0_main_Load | f1_0_main_Load | : | x1 = x1 ∧ x2 = x2 |
f274_0_power_LE' | f274_0_power_LE' | : | x1 = x1 ∧ x2 = x2 |
__init | __init | : | x1 = x1 ∧ x2 = x2 |
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, }.We remove transitions
, , , using the following ranking functions, which are bounded by 0.: | 1 + 2⋅x1 |
: | 2⋅x1 |
There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.