by AProVE
f242_0_createArray_Return | 1 | f382_0_random_ArrayAccess: | x1 = _arg1 ∧ x2 = _arg2 ∧ x3 = _arg3 ∧ x4 = _arg4 ∧ x5 = _arg5 ∧ x6 = _arg6 ∧ x7 = _arg7 ∧ x1 = _arg1P ∧ x2 = _arg2P ∧ x3 = _arg3P ∧ x4 = _arg4P ∧ x5 = _arg5P ∧ x6 = _arg6P ∧ x7 = _arg7P ∧ _arg4 = _arg3P ∧ 0 ≤ _arg1P − 1 ∧ 0 ≤ _arg2 − 1 ∧ 0 ≤ _arg1 − 1 ∧ _arg1P ≤ _arg2 ∧ _arg1P ≤ _arg1 | |
f1_0_main_Load | 2 | f382_0_random_ArrayAccess: | x1 = _x ∧ x2 = _x1 ∧ x3 = _x2 ∧ x4 = _x3 ∧ x5 = _x4 ∧ x6 = _x5 ∧ x7 = _x6 ∧ x1 = _x7 ∧ x2 = _x8 ∧ x3 = _x9 ∧ x4 = _x10 ∧ x5 = _x11 ∧ x6 = _x12 ∧ x7 = _x13 ∧ _x1 = _x8 ∧ 0 ≤ _x7 − 1 ∧ 0 ≤ _x − 1 ∧ _x7 ≤ _x | |
f1_0_main_Load | 3 | f464_0_createArray_GE: | x1 = _x14 ∧ x2 = _x15 ∧ x3 = _x16 ∧ x4 = _x17 ∧ x5 = _x18 ∧ x6 = _x19 ∧ x7 = _x20 ∧ x1 = _x21 ∧ x2 = _x23 ∧ x3 = _x24 ∧ x4 = _x25 ∧ x5 = _x26 ∧ x6 = _x27 ∧ x7 = _x29 ∧ 1 = _x25 ∧ _x15 = _x24 ∧ 0 = _x23 ∧ 0 ≤ _x21 − 1 ∧ 0 ≤ _x14 − 1 ∧ _x21 ≤ _x14 ∧ 0 ≤ _x15 − 1 ∧ −1 ≤ _x26 − 1 | |
f464_0_createArray_GE | 4 | f464_0_createArray_GE: | x1 = _x30 ∧ x2 = _x31 ∧ x3 = _x32 ∧ x4 = _x33 ∧ x5 = _x34 ∧ x6 = _x35 ∧ x7 = _x36 ∧ x1 = _x37 ∧ x2 = _x38 ∧ x3 = _x39 ∧ x4 = _x40 ∧ x5 = _x41 ∧ x6 = _x42 ∧ x7 = _x43 ∧ _x34 = _x41 ∧ _x33 + 1 = _x40 ∧ _x32 = _x39 ∧ _x31 + 1 = _x38 ∧ 0 ≤ _x37 − 1 ∧ 0 ≤ _x30 − 1 ∧ _x37 ≤ _x30 ∧ −1 ≤ _x34 − 1 ∧ _x31 ≤ _x34 − 1 ∧ 0 ≤ _x33 − 1 ∧ _x33 ≤ _x32 − 1 | |
f382_0_random_ArrayAccess | 5 | f826_0_binarySearch_LE: | x1 = _x44 ∧ x2 = _x45 ∧ x3 = _x46 ∧ x4 = _x47 ∧ x5 = _x48 ∧ x6 = _x49 ∧ x7 = _x50 ∧ x1 = _x51 ∧ x2 = _x52 ∧ x3 = _x53 ∧ x4 = _x54 ∧ x5 = _x55 ∧ x6 = _x56 ∧ x7 = _x57 ∧ _x58 ≤ _x45 − 1 ∧ 0 ≤ _x58 − 1 ∧ −1 ≤ _x53 − 1 ∧ 0 ≤ _x45 − 1 ∧ −1 ≤ _x46 − 1 ∧ 1 ≤ _x59 − 1 ∧ _x52 ≤ _x44 ∧ 0 ≤ _x44 − 1 ∧ 0 ≤ _x51 − 1 ∧ 0 ≤ _x52 − 1 ∧ 0 = _x54 ∧ _x46 = _x55 ∧ _x46 = _x56 | |
f826_0_binarySearch_LE | 6 | f826_0_binarySearch_LE': | x1 = _x60 ∧ x2 = _x61 ∧ x3 = _x62 ∧ x4 = _x63 ∧ x5 = _x64 ∧ x6 = _x65 ∧ x7 = _x66 ∧ x1 = _x67 ∧ x2 = _x68 ∧ x3 = _x69 ∧ x4 = _x70 ∧ x5 = _x71 ∧ x6 = _x73 ∧ x7 = _x74 ∧ _x75 ≤ _x64 − _x63 ∧ −1 ≤ _x63 − 1 ∧ −1 ≤ _x64 − 1 ∧ _x63 ≤ _x64 ∧ −1 ≤ _x75 − 1 ∧ _x63 + _x75 ≤ _x65 − 1 ∧ 1 ≤ _x76 − 1 ∧ 0 ≤ _x63 + _x75 ∧ _x63 + _x75 − 1 ≤ _x63 + _x75 − 1 ∧ _x77 ≤ _x62 − 1 ∧ _x78 ≤ _x60 ∧ _x78 ≤ _x61 ∧ _x79 ≤ _x60 ∧ _x79 ≤ _x61 ∧ 0 ≤ _x60 − 1 ∧ 0 ≤ _x61 − 1 ∧ 0 ≤ _x78 − 1 ∧ 0 ≤ _x79 − 1 ∧ _x60 = _x67 ∧ _x61 = _x68 ∧ _x62 = _x69 ∧ _x63 = _x70 ∧ _x64 = _x71 ∧ _x65 = _x73 | |
f826_0_binarySearch_LE | 7 | f826_0_binarySearch_LE': | x1 = _x80 ∧ x2 = _x81 ∧ x3 = _x82 ∧ x4 = _x84 ∧ x5 = _x85 ∧ x6 = _x86 ∧ x7 = _x87 ∧ x1 = _x88 ∧ x2 = _x89 ∧ x3 = _x90 ∧ x4 = _x91 ∧ x5 = _x92 ∧ x6 = _x93 ∧ x7 = _x95 ∧ _x96 ≤ _x85 − _x84 ∧ −1 ≤ _x84 − 1 ∧ −1 ≤ _x85 − 1 ∧ _x84 ≤ _x85 ∧ −1 ≤ _x96 − 1 ∧ _x84 + _x96 ≤ _x86 − 1 ∧ 1 ≤ _x97 − 1 ∧ 0 ≤ _x84 + _x96 ∧ _x84 + _x96 − 1 ≤ _x84 + _x96 − 1 ∧ _x82 ≤ _x98 − 1 ∧ _x99 ≤ _x80 ∧ _x99 ≤ _x81 ∧ _x100 ≤ _x80 ∧ _x100 ≤ _x81 ∧ 0 ≤ _x80 − 1 ∧ 0 ≤ _x81 − 1 ∧ 0 ≤ _x99 − 1 ∧ 0 ≤ _x100 − 1 ∧ _x80 = _x88 ∧ _x81 = _x89 ∧ _x82 = _x90 ∧ _x84 = _x91 ∧ _x85 = _x92 ∧ _x86 = _x93 | |
f826_0_binarySearch_LE' | 8 | f826_0_binarySearch_LE: | x1 = _x101 ∧ x2 = _x102 ∧ x3 = _x103 ∧ x4 = _x104 ∧ x5 = _x106 ∧ x6 = _x107 ∧ x7 = _x108 ∧ x1 = _x109 ∧ x2 = _x110 ∧ x3 = _x111 ∧ x4 = _x112 ∧ x5 = _x113 ∧ x6 = _x114 ∧ x7 = _x115 ∧ _x116 ≤ _x106 − _x104 ∧ −1 ≤ _x104 − 1 ∧ −1 ≤ _x106 − 1 ∧ _x104 ≤ _x106 ∧ −1 ≤ _x116 − 1 ∧ _x104 + _x116 ≤ _x107 − 1 ∧ 1 ≤ _x117 − 1 ∧ 0 ≤ _x104 + _x116 ∧ _x104 + _x116 − 1 ≤ _x104 + _x116 − 1 ∧ _x118 ≤ _x103 − 1 ∧ _x109 ≤ _x101 ∧ _x109 ≤ _x102 ∧ _x110 ≤ _x101 ∧ _x110 ≤ _x102 ∧ 0 ≤ _x101 − 1 ∧ 0 ≤ _x102 − 1 ∧ 0 ≤ _x109 − 1 ∧ 0 ≤ _x110 − 1 ∧ _x106 − _x104 − 2⋅_x116 ≤ 1 ∧ 0 ≤ _x106 − _x104 − 2⋅_x116 ∧ _x103 = _x111 ∧ _x104 = _x112 ∧ _x104 + _x116 − 1 = _x113 ∧ _x107 = _x114 | |
f826_0_binarySearch_LE' | 9 | f826_0_binarySearch_LE: | x1 = _x119 ∧ x2 = _x120 ∧ x3 = _x121 ∧ x4 = _x122 ∧ x5 = _x124 ∧ x6 = _x125 ∧ x7 = _x126 ∧ x1 = _x127 ∧ x2 = _x128 ∧ x3 = _x129 ∧ x4 = _x130 ∧ x5 = _x131 ∧ x6 = _x132 ∧ x7 = _x133 ∧ _x134 ≤ _x124 − _x122 ∧ −1 ≤ _x122 − 1 ∧ −1 ≤ _x124 − 1 ∧ _x122 ≤ _x124 ∧ −1 ≤ _x134 − 1 ∧ _x122 + _x134 ≤ _x125 − 1 ∧ 1 ≤ _x136 − 1 ∧ 0 ≤ _x122 + _x134 ∧ _x122 + _x134 − 1 ≤ _x122 + _x134 − 1 ∧ _x121 ≤ _x137 − 1 ∧ _x127 ≤ _x119 ∧ _x127 ≤ _x120 ∧ _x128 ≤ _x119 ∧ _x128 ≤ _x120 ∧ 0 ≤ _x119 − 1 ∧ 0 ≤ _x120 − 1 ∧ 0 ≤ _x127 − 1 ∧ 0 ≤ _x128 − 1 ∧ _x124 − _x122 − 2⋅_x134 ≤ 1 ∧ 0 ≤ _x124 − _x122 − 2⋅_x134 ∧ _x121 = _x129 ∧ _x122 = _x130 ∧ _x122 + _x134 − 1 = _x131 ∧ _x125 = _x132 | |
f826_0_binarySearch_LE | 10 | f826_0_binarySearch_LE': | x1 = _x138 ∧ x2 = _x139 ∧ x3 = _x140 ∧ x4 = _x141 ∧ x5 = _x142 ∧ x6 = _x143 ∧ x7 = _x144 ∧ x1 = _x150 ∧ x2 = _x151 ∧ x3 = _x152 ∧ x4 = _x153 ∧ x5 = _x154 ∧ x6 = _x155 ∧ x7 = _x156 ∧ _x157 ≤ _x142 − _x141 ∧ −1 ≤ _x141 − 1 ∧ −1 ≤ _x142 − 1 ∧ _x141 ≤ _x142 ∧ −1 ≤ _x157 − 1 ∧ _x141 + _x157 ≤ _x143 − 1 ∧ 1 ≤ _x161 − 1 ∧ 0 ≤ _x141 + _x157 ∧ _x141 + _x157 − 1 ≤ _x141 + _x157 − 1 ∧ _x162 ≤ _x140 − 1 ∧ _x163 ≤ _x138 ∧ _x163 ≤ _x139 ∧ 0 ≤ _x138 − 1 ∧ 0 ≤ _x139 − 1 ∧ 0 ≤ _x163 − 1 ∧ _x138 = _x150 ∧ _x139 = _x151 ∧ _x140 = _x152 ∧ _x141 = _x153 ∧ _x142 = _x154 ∧ _x143 = _x155 | |
f826_0_binarySearch_LE | 11 | f826_0_binarySearch_LE': | x1 = _x164 ∧ x2 = _x165 ∧ x3 = _x166 ∧ x4 = _x167 ∧ x5 = _x168 ∧ x6 = _x172 ∧ x7 = _x173 ∧ x1 = _x174 ∧ x2 = _x175 ∧ x3 = _x176 ∧ x4 = _x177 ∧ x5 = _x178 ∧ x6 = _x179 ∧ x7 = _x180 ∧ _x181 ≤ _x168 − _x167 ∧ −1 ≤ _x167 − 1 ∧ −1 ≤ _x168 − 1 ∧ _x167 ≤ _x168 ∧ −1 ≤ _x181 − 1 ∧ _x167 + _x181 ≤ _x172 − 1 ∧ 1 ≤ _x182 − 1 ∧ 0 ≤ _x167 + _x181 ∧ _x167 + _x181 − 1 ≤ _x167 + _x181 − 1 ∧ _x166 ≤ _x183 − 1 ∧ _x184 ≤ _x164 ∧ _x184 ≤ _x165 ∧ 0 ≤ _x164 − 1 ∧ 0 ≤ _x165 − 1 ∧ 0 ≤ _x184 − 1 ∧ _x164 = _x174 ∧ _x165 = _x175 ∧ _x166 = _x176 ∧ _x167 = _x177 ∧ _x168 = _x178 ∧ _x172 = _x179 | |
f826_0_binarySearch_LE' | 12 | f1076_0_binarySearch_EQ: | x1 = _x185 ∧ x2 = _x186 ∧ x3 = _x187 ∧ x4 = _x188 ∧ x5 = _x189 ∧ x6 = _x190 ∧ x7 = _x191 ∧ x1 = _x192 ∧ x2 = _x193 ∧ x3 = _x194 ∧ x4 = _x195 ∧ x5 = _x196 ∧ x6 = _x197 ∧ x7 = _x198 ∧ _x199 ≤ _x189 − _x188 ∧ −1 ≤ _x188 − 1 ∧ −1 ≤ _x189 − 1 ∧ _x188 ≤ _x189 ∧ −1 ≤ _x199 − 1 ∧ _x188 + _x199 ≤ _x190 − 1 ∧ 1 ≤ _x200 − 1 ∧ 0 ≤ _x188 + _x199 ∧ _x188 + _x199 − 1 ≤ _x188 + _x199 − 1 ∧ _x201 ≤ _x187 − 1 ∧ _x192 ≤ _x185 ∧ _x192 ≤ _x186 ∧ 0 ≤ _x185 − 1 ∧ 0 ≤ _x186 − 1 ∧ 0 ≤ _x192 − 1 ∧ _x189 − _x188 − 2⋅_x199 ≤ 1 ∧ 0 ≤ _x189 − _x188 − 2⋅_x199 ∧ _x187 = _x193 ∧ _x189 = _x194 ∧ _x188 + _x199 = _x195 ∧ 0 = _x196 ∧ _x190 = _x198 | |
f826_0_binarySearch_LE' | 13 | f1076_0_binarySearch_EQ: | x1 = _x202 ∧ x2 = _x203 ∧ x3 = _x204 ∧ x4 = _x205 ∧ x5 = _x206 ∧ x6 = _x207 ∧ x7 = _x208 ∧ x1 = _x209 ∧ x2 = _x210 ∧ x3 = _x211 ∧ x4 = _x212 ∧ x5 = _x213 ∧ x6 = _x214 ∧ x7 = _x215 ∧ _x216 ≤ _x206 − _x205 ∧ −1 ≤ _x205 − 1 ∧ −1 ≤ _x206 − 1 ∧ _x205 ≤ _x206 ∧ −1 ≤ _x216 − 1 ∧ _x205 + _x216 ≤ _x207 − 1 ∧ 1 ≤ _x217 − 1 ∧ 0 ≤ _x205 + _x216 ∧ _x205 + _x216 − 1 ≤ _x205 + _x216 − 1 ∧ _x204 ≤ _x218 − 1 ∧ _x209 ≤ _x202 ∧ _x209 ≤ _x203 ∧ 0 ≤ _x202 − 1 ∧ 0 ≤ _x203 − 1 ∧ 0 ≤ _x209 − 1 ∧ _x206 − _x205 − 2⋅_x216 ≤ 1 ∧ 0 ≤ _x206 − _x205 − 2⋅_x216 ∧ _x204 = _x210 ∧ _x206 = _x211 ∧ _x205 + _x216 = _x212 ∧ 0 = _x213 ∧ _x207 = _x215 | |
f826_0_binarySearch_LE' | 14 | f1078_0_binarySearch_EQ: | x1 = _x219 ∧ x2 = _x220 ∧ x3 = _x221 ∧ x4 = _x226 ∧ x5 = _x227 ∧ x6 = _x228 ∧ x7 = _x229 ∧ x1 = _x230 ∧ x2 = _x231 ∧ x3 = _x236 ∧ x4 = _x237 ∧ x5 = _x238 ∧ x6 = _x239 ∧ x7 = _x240 ∧ _x241 ≤ _x227 − _x226 ∧ −1 ≤ _x226 − 1 ∧ −1 ≤ _x227 − 1 ∧ _x226 ≤ _x227 ∧ −1 ≤ _x241 − 1 ∧ _x226 + _x241 ≤ _x228 − 1 ∧ 1 ≤ _x242 − 1 ∧ 0 ≤ _x226 + _x241 ∧ _x226 + _x241 − 1 ≤ _x226 + _x241 − 1 ∧ _x244 ≤ _x221 − 1 ∧ _x230 ≤ _x219 ∧ _x230 ≤ _x220 ∧ 0 ≤ _x219 − 1 ∧ 0 ≤ _x220 − 1 ∧ 0 ≤ _x230 − 1 ∧ _x227 − _x226 − 2⋅_x241 ≤ 1 ∧ 0 ≤ _x227 − _x226 − 2⋅_x241 ∧ _x221 = _x231 ∧ _x227 = _x236 ∧ _x226 + _x241 = _x237 ∧ 0 = _x238 ∧ _x228 = _x240 | |
f826_0_binarySearch_LE' | 15 | f1078_0_binarySearch_EQ: | x1 = _x247 ∧ x2 = _x248 ∧ x3 = _x249 ∧ x4 = _x250 ∧ x5 = _x251 ∧ x6 = _x252 ∧ x7 = _x253 ∧ x1 = _x255 ∧ x2 = _x258 ∧ x3 = _x259 ∧ x4 = _x260 ∧ x5 = _x261 ∧ x6 = _x262 ∧ x7 = _x263 ∧ _x264 ≤ _x251 − _x250 ∧ −1 ≤ _x250 − 1 ∧ −1 ≤ _x251 − 1 ∧ _x250 ≤ _x251 ∧ −1 ≤ _x264 − 1 ∧ _x250 + _x264 ≤ _x252 − 1 ∧ 1 ≤ _x265 − 1 ∧ 0 ≤ _x250 + _x264 ∧ _x250 + _x264 − 1 ≤ _x250 + _x264 − 1 ∧ _x249 ≤ _x266 − 1 ∧ _x255 ≤ _x247 ∧ _x255 ≤ _x248 ∧ 0 ≤ _x247 − 1 ∧ 0 ≤ _x248 − 1 ∧ 0 ≤ _x255 − 1 ∧ _x251 − _x250 − 2⋅_x264 ≤ 1 ∧ 0 ≤ _x251 − _x250 − 2⋅_x264 ∧ _x249 = _x258 ∧ _x251 = _x259 ∧ _x250 + _x264 = _x260 ∧ 0 = _x261 ∧ _x252 = _x263 | |
f826_0_binarySearch_LE' | 16 | f1076_0_binarySearch_EQ: | x1 = _x267 ∧ x2 = _x268 ∧ x3 = _x269 ∧ x4 = _x270 ∧ x5 = _x271 ∧ x6 = _x272 ∧ x7 = _x273 ∧ x1 = _x274 ∧ x2 = _x275 ∧ x3 = _x276 ∧ x4 = _x277 ∧ x5 = _x278 ∧ x6 = _x279 ∧ x7 = _x280 ∧ _x281 ≤ _x271 − _x270 ∧ −1 ≤ _x270 − 1 ∧ −1 ≤ _x271 − 1 ∧ _x270 ≤ _x271 ∧ −1 ≤ _x281 − 1 ∧ _x270 + _x281 ≤ _x272 − 1 ∧ 1 ≤ _x282 − 1 ∧ 0 ≤ _x270 + _x281 ∧ _x270 + _x281 − 1 ≤ _x270 + _x281 − 1 ∧ _x283 ≤ _x269 − 1 ∧ _x274 ≤ _x267 ∧ _x274 ≤ _x268 ∧ 0 ≤ _x267 − 1 ∧ 0 ≤ _x268 − 1 ∧ 0 ≤ _x274 − 1 ∧ _x271 − _x270 − 2⋅_x281 ≤ 1 ∧ 0 ≤ _x271 − _x270 − 2⋅_x281 ∧ _x269 = _x275 ∧ _x271 = _x276 ∧ _x270 + _x281 = _x277 ∧ 1 = _x278 ∧ _x272 = _x280 | |
f826_0_binarySearch_LE' | 17 | f1076_0_binarySearch_EQ: | x1 = _x284 ∧ x2 = _x286 ∧ x3 = _x289 ∧ x4 = _x290 ∧ x5 = _x291 ∧ x6 = _x292 ∧ x7 = _x293 ∧ x1 = _x294 ∧ x2 = _x295 ∧ x3 = _x297 ∧ x4 = _x300 ∧ x5 = _x301 ∧ x6 = _x302 ∧ x7 = _x303 ∧ _x304 ≤ _x291 − _x290 ∧ −1 ≤ _x290 − 1 ∧ −1 ≤ _x291 − 1 ∧ _x290 ≤ _x291 ∧ −1 ≤ _x304 − 1 ∧ _x290 + _x304 ≤ _x292 − 1 ∧ 1 ≤ _x305 − 1 ∧ 0 ≤ _x290 + _x304 ∧ _x290 + _x304 − 1 ≤ _x290 + _x304 − 1 ∧ _x289 ≤ _x306 − 1 ∧ _x294 ≤ _x284 ∧ _x294 ≤ _x286 ∧ 0 ≤ _x284 − 1 ∧ 0 ≤ _x286 − 1 ∧ 0 ≤ _x294 − 1 ∧ _x291 − _x290 − 2⋅_x304 ≤ 1 ∧ 0 ≤ _x291 − _x290 − 2⋅_x304 ∧ _x289 = _x295 ∧ _x291 = _x297 ∧ _x290 + _x304 = _x300 ∧ 1 = _x301 ∧ _x292 = _x303 | |
f826_0_binarySearch_LE' | 18 | f1078_0_binarySearch_EQ: | x1 = _x307 ∧ x2 = _x308 ∧ x3 = _x309 ∧ x4 = _x310 ∧ x5 = _x311 ∧ x6 = _x312 ∧ x7 = _x313 ∧ x1 = _x314 ∧ x2 = _x315 ∧ x3 = _x316 ∧ x4 = _x317 ∧ x5 = _x318 ∧ x6 = _x319 ∧ x7 = _x320 ∧ _x321 ≤ _x311 − _x310 ∧ −1 ≤ _x310 − 1 ∧ −1 ≤ _x311 − 1 ∧ _x310 ≤ _x311 ∧ −1 ≤ _x321 − 1 ∧ _x310 + _x321 ≤ _x312 − 1 ∧ 1 ≤ _x322 − 1 ∧ 0 ≤ _x310 + _x321 ∧ _x310 + _x321 − 1 ≤ _x310 + _x321 − 1 ∧ _x323 ≤ _x309 − 1 ∧ _x314 ≤ _x307 ∧ _x314 ≤ _x308 ∧ 0 ≤ _x307 − 1 ∧ 0 ≤ _x308 − 1 ∧ 0 ≤ _x314 − 1 ∧ _x311 − _x310 − 2⋅_x321 ≤ 1 ∧ 0 ≤ _x311 − _x310 − 2⋅_x321 ∧ _x309 = _x315 ∧ _x311 = _x316 ∧ _x310 + _x321 = _x317 ∧ 1 = _x318 ∧ _x312 = _x320 | |
f826_0_binarySearch_LE' | 19 | f1078_0_binarySearch_EQ: | x1 = _x324 ∧ x2 = _x325 ∧ x3 = _x326 ∧ x4 = _x328 ∧ x5 = _x331 ∧ x6 = _x332 ∧ x7 = _x333 ∧ x1 = _x334 ∧ x2 = _x335 ∧ x3 = _x336 ∧ x4 = _x337 ∧ x5 = _x339 ∧ x6 = _x342 ∧ x7 = _x343 ∧ _x344 ≤ _x331 − _x328 ∧ −1 ≤ _x328 − 1 ∧ −1 ≤ _x331 − 1 ∧ _x328 ≤ _x331 ∧ −1 ≤ _x344 − 1 ∧ _x328 + _x344 ≤ _x332 − 1 ∧ 1 ≤ _x345 − 1 ∧ 0 ≤ _x328 + _x344 ∧ _x328 + _x344 − 1 ≤ _x328 + _x344 − 1 ∧ _x326 ≤ _x346 − 1 ∧ _x334 ≤ _x324 ∧ _x334 ≤ _x325 ∧ 0 ≤ _x324 − 1 ∧ 0 ≤ _x325 − 1 ∧ 0 ≤ _x334 − 1 ∧ _x331 − _x328 − 2⋅_x344 ≤ 1 ∧ 0 ≤ _x331 − _x328 − 2⋅_x344 ∧ _x326 = _x335 ∧ _x331 = _x336 ∧ _x328 + _x344 = _x337 ∧ 1 = _x339 ∧ _x332 = _x343 | |
f1078_0_binarySearch_EQ | 20 | f826_0_binarySearch_LE: | x1 = _x347 ∧ x2 = _x348 ∧ x3 = _x349 ∧ x4 = _x350 ∧ x5 = _x351 ∧ x6 = _x352 ∧ x7 = _x353 ∧ x1 = _x354 ∧ x2 = _x355 ∧ x3 = _x356 ∧ x4 = _x357 ∧ x5 = _x358 ∧ x6 = _x359 ∧ x7 = _x360 ∧ 1 ≤ _x361 − 1 ∧ −1 ≤ _x350 − 1 ∧ _x354 ≤ _x347 ∧ _x355 ≤ _x347 ∧ 0 ≤ _x347 − 1 ∧ 0 ≤ _x354 − 1 ∧ 0 ≤ _x355 − 1 ∧ 0 = _x351 ∧ _x348 = _x356 ∧ _x350 + 1 = _x357 ∧ _x349 = _x358 ∧ _x353 = _x359 | |
f1076_0_binarySearch_EQ | 21 | f826_0_binarySearch_LE: | x1 = _x362 ∧ x2 = _x363 ∧ x3 = _x364 ∧ x4 = _x365 ∧ x5 = _x366 ∧ x6 = _x367 ∧ x7 = _x368 ∧ x1 = _x370 ∧ x2 = _x373 ∧ x3 = _x374 ∧ x4 = _x375 ∧ x5 = _x376 ∧ x6 = _x377 ∧ x7 = _x378 ∧ 1 ≤ _x379 − 1 ∧ −1 ≤ _x365 − 1 ∧ _x370 ≤ _x362 ∧ _x373 ≤ _x362 ∧ 0 ≤ _x362 − 1 ∧ 0 ≤ _x370 − 1 ∧ 0 ≤ _x373 − 1 ∧ 0 = _x366 ∧ _x363 = _x374 ∧ _x365 + 1 = _x375 ∧ _x364 = _x376 ∧ _x368 = _x377 | |
f826_0_binarySearch_LE' | 22 | f1076_0_binarySearch_EQ: | x1 = _x381 ∧ x2 = _x384 ∧ x3 = _x385 ∧ x4 = _x386 ∧ x5 = _x387 ∧ x6 = _x388 ∧ x7 = _x389 ∧ x1 = _x390 ∧ x2 = _x391 ∧ x3 = _x392 ∧ x4 = _x394 ∧ x5 = _x395 ∧ x6 = _x396 ∧ x7 = _x397 ∧ _x398 ≤ _x387 − _x386 ∧ −1 ≤ _x386 − 1 ∧ −1 ≤ _x387 − 1 ∧ _x386 ≤ _x387 ∧ −1 ≤ _x398 − 1 ∧ _x386 + _x398 ≤ _x388 − 1 ∧ 1 ≤ _x399 − 1 ∧ 0 ≤ _x386 + _x398 ∧ _x386 + _x398 − 1 ≤ _x386 + _x398 − 1 ∧ _x400 ≤ _x385 − 1 ∧ _x390 ≤ _x381 ∧ _x390 ≤ _x384 ∧ 0 ≤ _x381 − 1 ∧ 0 ≤ _x384 − 1 ∧ 0 ≤ _x390 − 1 ∧ _x387 − _x386 − 2⋅_x398 ≤ 1 ∧ 0 ≤ _x387 − _x386 − 2⋅_x398 ∧ _x385 = _x391 ∧ _x387 = _x392 ∧ _x386 + _x398 = _x394 ∧ _x388 = _x397 | |
f826_0_binarySearch_LE' | 23 | f1076_0_binarySearch_EQ: | x1 = _x401 ∧ x2 = _x402 ∧ x3 = _x403 ∧ x4 = _x404 ∧ x5 = _x405 ∧ x6 = _x406 ∧ x7 = _x407 ∧ x1 = _x408 ∧ x2 = _x409 ∧ x3 = _x410 ∧ x4 = _x411 ∧ x5 = _x412 ∧ x6 = _x413 ∧ x7 = _x414 ∧ _x415 ≤ _x405 − _x404 ∧ −1 ≤ _x404 − 1 ∧ −1 ≤ _x405 − 1 ∧ _x404 ≤ _x405 ∧ −1 ≤ _x415 − 1 ∧ _x404 + _x415 ≤ _x406 − 1 ∧ 1 ≤ _x416 − 1 ∧ 0 ≤ _x404 + _x415 ∧ _x404 + _x415 − 1 ≤ _x404 + _x415 − 1 ∧ _x403 ≤ _x417 − 1 ∧ _x408 ≤ _x401 ∧ _x408 ≤ _x402 ∧ 0 ≤ _x401 − 1 ∧ 0 ≤ _x402 − 1 ∧ 0 ≤ _x408 − 1 ∧ _x405 − _x404 − 2⋅_x415 ≤ 1 ∧ 0 ≤ _x405 − _x404 − 2⋅_x415 ∧ _x403 = _x409 ∧ _x405 = _x410 ∧ _x404 + _x415 = _x411 ∧ _x406 = _x414 | |
f826_0_binarySearch_LE' | 24 | f1078_0_binarySearch_EQ: | x1 = _x418 ∧ x2 = _x419 ∧ x3 = _x420 ∧ x4 = _x422 ∧ x5 = _x423 ∧ x6 = _x426 ∧ x7 = _x427 ∧ x1 = _x428 ∧ x2 = _x429 ∧ x3 = _x430 ∧ x4 = _x431 ∧ x5 = _x432 ∧ x6 = _x434 ∧ x7 = _x435 ∧ _x438 ≤ _x423 − _x422 ∧ −1 ≤ _x422 − 1 ∧ −1 ≤ _x423 − 1 ∧ _x422 ≤ _x423 ∧ −1 ≤ _x438 − 1 ∧ _x422 + _x438 ≤ _x426 − 1 ∧ 1 ≤ _x439 − 1 ∧ 0 ≤ _x422 + _x438 ∧ _x422 + _x438 − 1 ≤ _x422 + _x438 − 1 ∧ _x440 ≤ _x420 − 1 ∧ _x428 ≤ _x418 ∧ _x428 ≤ _x419 ∧ 0 ≤ _x418 − 1 ∧ 0 ≤ _x419 − 1 ∧ 0 ≤ _x428 − 1 ∧ _x423 − _x422 − 2⋅_x438 ≤ 1 ∧ 0 ≤ _x423 − _x422 − 2⋅_x438 ∧ _x420 = _x429 ∧ _x423 = _x430 ∧ _x422 + _x438 = _x431 ∧ _x426 = _x435 | |
f826_0_binarySearch_LE' | 25 | f1078_0_binarySearch_EQ: | x1 = _x441 ∧ x2 = _x442 ∧ x3 = _x443 ∧ x4 = _x444 ∧ x5 = _x445 ∧ x6 = _x446 ∧ x7 = _x447 ∧ x1 = _x448 ∧ x2 = _x449 ∧ x3 = _x450 ∧ x4 = _x451 ∧ x5 = _x452 ∧ x6 = _x453 ∧ x7 = _x454 ∧ _x455 ≤ _x445 − _x444 ∧ −1 ≤ _x444 − 1 ∧ −1 ≤ _x445 − 1 ∧ _x444 ≤ _x445 ∧ −1 ≤ _x455 − 1 ∧ _x444 + _x455 ≤ _x446 − 1 ∧ 1 ≤ _x456 − 1 ∧ 0 ≤ _x444 + _x455 ∧ _x444 + _x455 − 1 ≤ _x444 + _x455 − 1 ∧ _x443 ≤ _x457 − 1 ∧ _x448 ≤ _x441 ∧ _x448 ≤ _x442 ∧ 0 ≤ _x441 − 1 ∧ 0 ≤ _x442 − 1 ∧ 0 ≤ _x448 − 1 ∧ _x445 − _x444 − 2⋅_x455 ≤ 1 ∧ 0 ≤ _x445 − _x444 − 2⋅_x455 ∧ _x443 = _x449 ∧ _x445 = _x450 ∧ _x444 + _x455 = _x451 ∧ _x446 = _x454 | |
__init | 26 | f1_0_main_Load: | x1 = _x458 ∧ x2 = _x459 ∧ x3 = _x460 ∧ x4 = _x461 ∧ x5 = _x462 ∧ x6 = _x463 ∧ x7 = _x464 ∧ x1 = _x466 ∧ x2 = _x467 ∧ x3 = _x470 ∧ x4 = _x471 ∧ x5 = _x472 ∧ x6 = _x473 ∧ x7 = _x474 ∧ 0 ≤ 0 |
f826_0_binarySearch_LE' | f826_0_binarySearch_LE' | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
f1076_0_binarySearch_EQ | f1076_0_binarySearch_EQ | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
f242_0_createArray_Return | f242_0_createArray_Return | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
f826_0_binarySearch_LE | f826_0_binarySearch_LE | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
f1078_0_binarySearch_EQ | f1078_0_binarySearch_EQ | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
f382_0_random_ArrayAccess | f382_0_random_ArrayAccess | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
f1_0_main_Load | f1_0_main_Load | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
f464_0_createArray_GE | f464_0_createArray_GE | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
__init | __init | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 ∧ x4 = x4 ∧ x5 = x5 ∧ x6 = x6 ∧ x7 = x7 |
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC {
}.We remove transition
using the following ranking functions, which are bounded by 0.: | − x4 + x3 |
There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.
Here we consider the SCC {
, , , }.We remove transitions
, , , , , , , , , , , , , , , using the following ranking functions, which are bounded by 0.: | −3⋅x4 + 2⋅x5 + 2⋅x6 + 2 |
: | −3⋅x4 + 2⋅x5 + 2⋅x6 + 1 |
: | −3⋅x4 + 2⋅x3 + 2⋅x7 |
: | −3⋅x4 + 2⋅x3 + 2⋅x7 |
We remove transition
using the following ranking functions, which are bounded by 0.: | 0⋅x5 |
: | −1 |
: | −1 |
: | −1 + 0⋅x5 |
We remove transitions
, using the following ranking functions, which are bounded by 0.: | −3⋅x4 + 3⋅x6 |
: | −3⋅x4 + 3⋅x6 − 1 |
: | −3⋅x4 + 3⋅x7 − 2 |
We remove transition
using the following ranking functions, which are bounded by 0.: | 0⋅x5 |
: | −1 |
There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.