LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Invariant Updates

The following invariants are asserted.

0: TRUE
1: 1 − arg1P ≤ 01 − arg2P ≤ 01 − arg1 ≤ 01 − arg2 ≤ 0
2: 1 − arg1P ≤ 01 − arg2P ≤ 01 − arg1 ≤ 01 − arg2 ≤ 0arg4 ≤ 0
3: 1 − arg3P ≤ 0arg2 ≤ 01 − arg3 ≤ 0
4: 1 − arg4P ≤ 01 − arg4 ≤ 0
5: TRUE

The invariants are proved as follows.

IMPACT Invariant Proof

2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
1 13 1: x78 + x78 ≤ 0x78x78 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x68 + x68 ≤ 0x68x68 ≤ 0x6 + x6 ≤ 0x6x6 ≤ 0x12 + x12 ≤ 0x12x12 ≤ 0x11 + x11 ≤ 0x11x11 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
2 20 2: x78 + x78 ≤ 0x78x78 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x68 + x68 ≤ 0x68x68 ≤ 0x6 + x6 ≤ 0x6x6 ≤ 0x12 + x12 ≤ 0x12x12 ≤ 0x11 + x11 ≤ 0x11x11 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
3 27 3: x78 + x78 ≤ 0x78x78 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x68 + x68 ≤ 0x68x68 ≤ 0x6 + x6 ≤ 0x6x6 ≤ 0x12 + x12 ≤ 0x12x12 ≤ 0x11 + x11 ≤ 0x11x11 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
and for every transition t, a duplicate t is considered.

3 Transition Removal

We remove transitions 0, 1, 2, 5, 8, 12 using the following ranking functions, which are bounded by −19.

5: 0
0: 0
1: 0
2: 0
3: 0
4: 0
5: −6
0: −7
1: −8
1_var_snapshot: −8
1*: −8
2: −11
2_var_snapshot: −11
2*: −11
3: −14
4: −14
3_var_snapshot: −14
3*: −14

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1* 16 1: x78 + x78 ≤ 0x78x78 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x68 + x68 ≤ 0x68x68 ≤ 0x6 + x6 ≤ 0x6x6 ≤ 0x12 + x12 ≤ 0x12x12 ≤ 0x11 + x11 ≤ 0x11x11 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1 14 1_var_snapshot: x78 + x78 ≤ 0x78x78 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x68 + x68 ≤ 0x68x68 ≤ 0x6 + x6 ≤ 0x6x6 ≤ 0x12 + x12 ≤ 0x12x12 ≤ 0x11 + x11 ≤ 0x11x11 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2* 23 2: x78 + x78 ≤ 0x78x78 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x68 + x68 ≤ 0x68x68 ≤ 0x6 + x6 ≤ 0x6x6 ≤ 0x12 + x12 ≤ 0x12x12 ≤ 0x11 + x11 ≤ 0x11x11 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

7 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2 21 2_var_snapshot: x78 + x78 ≤ 0x78x78 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x68 + x68 ≤ 0x68x68 ≤ 0x6 + x6 ≤ 0x6x6 ≤ 0x12 + x12 ≤ 0x12x12 ≤ 0x11 + x11 ≤ 0x11x11 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

8 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3* 30 3: x78 + x78 ≤ 0x78x78 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x68 + x68 ≤ 0x68x68 ≤ 0x6 + x6 ≤ 0x6x6 ≤ 0x12 + x12 ≤ 0x12x12 ≤ 0x11 + x11 ≤ 0x11x11 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

9 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3 28 3_var_snapshot: x78 + x78 ≤ 0x78x78 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x68 + x68 ≤ 0x68x68 ≤ 0x6 + x6 ≤ 0x6x6 ≤ 0x12 + x12 ≤ 0x12x12 ≤ 0x11 + x11 ≤ 0x11x11 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

10 SCC Decomposition

We consider subproblems for each of the 3 SCC(s) of the program graph.

10.1 SCC Subproblem 1/3

Here we consider the SCC { 3, 4, 3_var_snapshot, 3* }.

10.1.1 Transition Removal

We remove transitions 9, 10, 11 using the following ranking functions, which are bounded by −1.

3: −2 − 2⋅arg2 − 2⋅arg4 + 4⋅arg5
4: −4⋅arg2 + 4⋅arg3
3_var_snapshot: −3 − 2⋅arg2 − 2⋅arg4 + 4⋅arg5
3*: −1 − 2⋅arg2 − 2⋅arg4 + 4⋅arg5

10.1.2 Transition Removal

We remove transitions 28, 30 using the following ranking functions, which are bounded by −1.

3: 0
4: 0
3_var_snapshot: arg3P
3*: arg3P

10.1.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

10.1.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 27.

10.1.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

10.2 SCC Subproblem 2/3

Here we consider the SCC { 2, 2_var_snapshot, 2* }.

10.2.1 Transition Removal

We remove transition 6 using the following ranking functions, which are bounded by 2.

2: 1 − 3⋅arg3 + 3⋅arg4
2_var_snapshot: −3⋅arg3 + 3⋅arg4
2*: 2 − 3⋅arg3 + 3⋅arg4

10.2.2 Transition Removal

We remove transition 7 using the following ranking functions, which are bounded by 2.

2: 1 − 3⋅arg3 + 3⋅arg4
2_var_snapshot: −3⋅arg3 + 3⋅arg4
2*: 2 − 3⋅arg3 + 3⋅arg4

10.2.3 Transition Removal

We remove transitions 21, 23 using the following ranking functions, which are bounded by −1.

2: 0
2_var_snapshot: arg1
2*: arg2P

10.2.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

10.2.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 20.

10.2.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

10.3 SCC Subproblem 3/3

Here we consider the SCC { 1, 1_var_snapshot, 1* }.

10.3.1 Transition Removal

We remove transitions 3, 4 using the following ranking functions, which are bounded by 2.

1: 1 − 3⋅arg3 + 3⋅arg4
1_var_snapshot: −3⋅arg3 + 3⋅arg4
1*: 2 − 3⋅arg3 + 3⋅arg4

10.3.2 Transition Removal

We remove transitions 14, 16 using the following ranking functions, which are bounded by −2.

1: −1
1_var_snapshot: −2⋅arg2P
1*: 0

10.3.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

10.3.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 13.

10.3.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert