by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ − x2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
1 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ − x6 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ −99 + x6 − 100⋅x7 ≤ 0 ∧ − x6 + 100⋅x7 ≤ 0 ∧ − arg1P + x6 − 100⋅x7 ≤ 0 ∧ arg1P − x6 + 100⋅x7 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x2 + x2 ≤ 0 ∧ x2 − x2 ≤ 0 | |
2 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ −1 − arg1P + arg1 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x2 + x2 ≤ 0 ∧ x2 − x2 ≤ 0 | |
3 | 3 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x2 + x2 ≤ 0 ∧ x2 − x2 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ − x2 ≤ 0 |
2: | − x2 ≤ 0 ∧ − x6 ≤ 0 |
3: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ − x2 ≤ 0 | ||
2 | (2) | − x2 ≤ 0 ∧ − x6 ≤ 0 | ||
3 | (3) | TRUE |
0 | 0 1 | |
1 | 1 2 | |
2 | 2 2 | |
3 | 3 0 |
2 | 4 | : | − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x2 + x2 ≤ 0 ∧ x2 − x2 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, , using the following ranking functions, which are bounded by −13.3: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −8 |
: | −8 |
: | −8 |
5 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
7 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x2 + x2 ≤ 0 ∧ x2 − x2 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
5 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x2 + x2 ≤ 0 ∧ x2 − x2 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , }.We remove transition
using the following ranking functions, which are bounded by 2.: | 1 + 3⋅arg1 |
: | 3⋅arg1 |
: | 2 + 3⋅arg1 |
5 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] |
7 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 5, 7 using the following ranking functions, which are bounded by −1.
: | 0 |
: | −1 |
: | 1 |
5 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
7 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert