LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Invariant Updates

The following invariants are asserted.

0: TRUE
1: 1 − arg1P ≤ 01 − arg2P ≤ 0arg3P ≤ 01 − arg1 ≤ 01 − arg2 ≤ 0arg3 ≤ 0x7 ≤ 0
3: 2 − arg1P ≤ 0arg3P ≤ 02 − arg1 ≤ 0arg3 ≤ 0
4: 1 − arg1P ≤ 0arg2P ≤ 01 − arg1 ≤ 0arg2 ≤ 0x7 ≤ 02 − x58 ≤ 0
5: 1 − arg1P ≤ 0arg2P ≤ 01 − arg1 ≤ 0arg2 ≤ 0
6: TRUE

The invariants are proved as follows.

IMPACT Invariant Proof

2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
3 13 3: x7 + x7 ≤ 0x7x7 ≤ 0x58 + x58 ≤ 0x58x58 ≤ 0x57 + x57 ≤ 0x57x57 ≤ 0x48 + x48 ≤ 0x48x48 ≤ 0x39 + x39 ≤ 0x39x39 ≤ 0x30 + x30 ≤ 0x30x30 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
4 20 4: x7 + x7 ≤ 0x7x7 ≤ 0x58 + x58 ≤ 0x58x58 ≤ 0x57 + x57 ≤ 0x57x57 ≤ 0x48 + x48 ≤ 0x48x48 ≤ 0x39 + x39 ≤ 0x39x39 ≤ 0x30 + x30 ≤ 0x30x30 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
5 27 5: x7 + x7 ≤ 0x7x7 ≤ 0x58 + x58 ≤ 0x58x58 ≤ 0x57 + x57 ≤ 0x57x57 ≤ 0x48 + x48 ≤ 0x48x48 ≤ 0x39 + x39 ≤ 0x39x39 ≤ 0x30 + x30 ≤ 0x30x30 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
and for every transition t, a duplicate t is considered.

3 Transition Removal

We remove transitions 0, 2, 7, 9, 12 using the following ranking functions, which are bounded by −21.

6: 0
0: 0
1: 0
4: 0
3: 0
5: 0
6: −7
0: −8
1: −9
4: −10
4_var_snapshot: −10
4*: −10
3: −13
3_var_snapshot: −13
3*: −13
5: −16
5_var_snapshot: −16
5*: −16

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3* 16 3: x7 + x7 ≤ 0x7x7 ≤ 0x58 + x58 ≤ 0x58x58 ≤ 0x57 + x57 ≤ 0x57x57 ≤ 0x48 + x48 ≤ 0x48x48 ≤ 0x39 + x39 ≤ 0x39x39 ≤ 0x30 + x30 ≤ 0x30x30 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3 14 3_var_snapshot: x7 + x7 ≤ 0x7x7 ≤ 0x58 + x58 ≤ 0x58x58 ≤ 0x57 + x57 ≤ 0x57x57 ≤ 0x48 + x48 ≤ 0x48x48 ≤ 0x39 + x39 ≤ 0x39x39 ≤ 0x30 + x30 ≤ 0x30x30 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4* 23 4: x7 + x7 ≤ 0x7x7 ≤ 0x58 + x58 ≤ 0x58x58 ≤ 0x57 + x57 ≤ 0x57x57 ≤ 0x48 + x48 ≤ 0x48x48 ≤ 0x39 + x39 ≤ 0x39x39 ≤ 0x30 + x30 ≤ 0x30x30 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

7 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4 21 4_var_snapshot: x7 + x7 ≤ 0x7x7 ≤ 0x58 + x58 ≤ 0x58x58 ≤ 0x57 + x57 ≤ 0x57x57 ≤ 0x48 + x48 ≤ 0x48x48 ≤ 0x39 + x39 ≤ 0x39x39 ≤ 0x30 + x30 ≤ 0x30x30 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

8 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5* 30 5: x7 + x7 ≤ 0x7x7 ≤ 0x58 + x58 ≤ 0x58x58 ≤ 0x57 + x57 ≤ 0x57x57 ≤ 0x48 + x48 ≤ 0x48x48 ≤ 0x39 + x39 ≤ 0x39x39 ≤ 0x30 + x30 ≤ 0x30x30 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

9 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5 28 5_var_snapshot: x7 + x7 ≤ 0x7x7 ≤ 0x58 + x58 ≤ 0x58x58 ≤ 0x57 + x57 ≤ 0x57x57 ≤ 0x48 + x48 ≤ 0x48x48 ≤ 0x39 + x39 ≤ 0x39x39 ≤ 0x30 + x30 ≤ 0x30x30 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

10 SCC Decomposition

We consider subproblems for each of the 3 SCC(s) of the program graph.

10.1 SCC Subproblem 1/3

Here we consider the SCC { 4, 4_var_snapshot, 4* }.

10.1.1 Transition Removal

We remove transitions 21, 23 using the following ranking functions, which are bounded by −1.

4: 3⋅arg2
4_var_snapshot: −1 + 3⋅arg2
4*: 1 + 3⋅arg2

10.1.2 Transition Removal

We remove transition 8 using the following ranking functions, which are bounded by −1.

4: 0
4_var_snapshot: arg2
4*: 0

10.1.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

10.1.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 20.

10.1.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

10.2 SCC Subproblem 2/3

Here we consider the SCC { 5, 5_var_snapshot, 5* }.

10.2.1 Transition Removal

We remove transitions 28, 30, 11 using the following ranking functions, which are bounded by 2.

5: 2 + 3⋅arg1
5_var_snapshot: 3⋅arg1
5*: 4 + 3⋅arg1

10.2.2 Transition Removal

We remove transition 10 using the following ranking functions, which are bounded by −1.

5: 0
5_var_snapshot: 0
5*: −1

10.2.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

10.2.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 27.

10.2.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

10.3 SCC Subproblem 3/3

Here we consider the SCC { 3, 3_var_snapshot, 3* }.

10.3.1 Transition Removal

We remove transitions 3, 4, 5, 6 using the following ranking functions, which are bounded by 2.

3: 1 − 2⋅arg2 + 2⋅arg3 + arg4arg5
3_var_snapshot: −2⋅arg2 + 2⋅arg3 + arg4arg5
3*: 2 − 2⋅arg2 + 2⋅arg3 + arg4arg5

10.3.2 Transition Removal

We remove transitions 14, 16 using the following ranking functions, which are bounded by −1.

3: 0
3_var_snapshot: −1
3*: 1

10.3.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

10.3.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 13.

10.3.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert