by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
0 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x7 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 4 − arg2P ≤ 0 ∧ − arg3P ≤ 0 ∧ arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
0 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x12 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ −1 − arg1 + arg2P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 2 − arg2P ≤ 0 ∧ − arg3P ≤ 0 ∧ arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 | |
1 | 3 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1 ≤ 0 ∧ 0 ≤ 0 ∧ −1 − arg1P + arg1 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
2 | 4 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ 1 − x15 ≤ 0 ∧ 2 + arg2P − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 2 − arg2 ≤ 0 ∧ 2 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg3 ≤ 0 ∧ arg3 ≤ 0 ∧ − arg3P ≤ 0 ∧ arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
3 | 5 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 + arg1P − arg1 ≤ 0 ∧ 1 + arg3 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ 3 − arg1 + arg2P ≤ 0 ∧ 1 + arg2P − arg2 ≤ 0 ∧ 3 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ 4 − arg1 + arg3P ≤ 0 ∧ 2 − arg1 + arg3 ≤ 0 ∧ 2 − arg2 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
3 | 6 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 + arg1P − arg1 ≤ 0 ∧ 1 − arg3 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ 3 − arg1 + arg2P ≤ 0 ∧ 1 + arg2P − arg2 ≤ 0 ∧ 3 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ 4 − arg1 + arg3P ≤ 0 ∧ 2 − arg1 + arg3 ≤ 0 ∧ 2 − arg2 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
3 | 7 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ −2 + arg1P − arg2 ≤ 0 ∧ 2 − arg1 + arg2P ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ 3 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 3 − arg1P ≤ 0 ∧ 1 − arg2P ≤ 0 ∧ − arg3 ≤ 0 ∧ arg3 ≤ 0 ∧ 1 − arg3P ≤ 0 ∧ −1 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 | |
4 | 8 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | TRUE |
2: | 1 − arg1P ≤ 0 ∧ 1 − arg2P ≤ 0 ∧ arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ arg3 ≤ 0 ∧ − arg3 ≤ 0 |
3: | − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ 1 − x15 ≤ 0 |
4: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | TRUE | ||
2 | (2) | 1 − arg1P ≤ 0 ∧ 1 − arg2P ≤ 0 ∧ arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ arg3 ≤ 0 ∧ − arg3 ≤ 0 | ||
3 | (3) | − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ 1 − x15 ≤ 0 | ||
4 | (4) | TRUE |
0 | 0 1 | |
0 | 1 2 | |
0 | 2 2 | |
1 | 3 1 | |
2 | 4 3 | |
3 | 5 3 | |
3 | 6 3 | |
3 | 7 3 | |
4 | 8 0 |
1 | 9 | : | − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
3 | 16 | : | − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, , , , using the following ranking functions, which are bounded by −17.4: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
3: | 0 |
: | −6 |
: | −7 |
: | −8 |
: | −8 |
: | −8 |
: | −11 |
: | −12 |
: | −12 |
: | −12 |
10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
12 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
19 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − x15 + x15 ≤ 0 ∧ x15 − x15 ≤ 0 ∧ − x12 + x12 ≤ 0 ∧ x12 − x12 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC {
, , }.We remove transition
using the following ranking functions, which are bounded by −1.: | 1 + 3⋅arg1 |
: | 3⋅arg1 |
: | 2 + 3⋅arg1 |
10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] |
12 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 12 using the following ranking functions, which are bounded by −2.
: | −1 |
: | −2 |
: | 0 |
10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
12 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 10 using the following ranking functions, which are bounded by −1.
: | 0 |
: | −1 |
: | 0 |
10 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , }.We remove transition
using the following ranking functions, which are bounded by −1.: | arg2 |
: | arg2 |
: | arg2 |
17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] ] |
19 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition
using the following ranking functions, which are bounded by −1.: | arg1 |
: | arg1 |
: | arg1 |
17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] ] |
19 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition
using the following ranking functions, which are bounded by −1.: | −3⋅arg3 |
: | −3⋅arg3 |
: | 1 − 3⋅arg3 |
17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] |
19 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 17, 19 using the following ranking functions, which are bounded by −1.
: | 0 |
: | −1 |
: | x15 |
17 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
19 | lexStrict[ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert