by T2Cert
2 | 1 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 | |
1 | 2 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2P ≤ 0 ∧ 1 − x7 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 | |
3 | 3 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ −1 + arg2 ≤ 0 ∧ 2 + arg1P − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 | |
3 | 4 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ 2 − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P ≤ 0 ∧ −1 − arg2P + arg2 ≤ 0 ∧ 1 + arg2P − arg2 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 | |
4 | 5 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ −1 − arg1P + arg1 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 | |
2 | 6 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2P ≤ 0 ∧ −1 + arg2P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 | |
5 | 7 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ −1 − arg1P + arg1 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ 1 − arg2P + arg2 ≤ 0 ∧ −1 + arg2P − arg2 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 | |
6 | 8 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 |
The following invariants are asserted.
1: | − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
2: | TRUE |
3: | 1 − x7 ≤ 0 |
4: | 1 − x7 ≤ 0 |
5: | TRUE |
6: | TRUE |
The invariants are proved as follows.
1 | (1) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
2 | (2) | TRUE | ||
3 | (3) | 1 − x7 ≤ 0 | ||
4 | (4) | 1 − x7 ≤ 0 | ||
5 | (5) | TRUE | ||
6 | (6) | TRUE |
1 | 2 3 | |
2 | 1 1 | |
2 | 6 5 | |
3 | 3 4 | |
3 | 4 3 | |
4 | 5 4 | |
5 | 7 5 | |
6 | 8 2 |
3 | 9 | : | − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
4 | 16 | : | − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
5 | 23 | : | − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, , , , using the following ranking functions, which are bounded by −21.6: | 0 |
2: | 0 |
1: | 0 |
3: | 0 |
4: | 0 |
5: | 0 |
: | −7 |
: | −8 |
: | −9 |
: | −10 |
: | −10 |
: | −10 |
: | −13 |
: | −13 |
: | −13 |
: | −16 |
: | −16 |
: | −16 |
10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
24 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
12 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
19 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
26 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
24 : − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 3 SCC(s) of the program graph.
Here we consider the SCC {
, , }.We remove transition
using the following ranking functions, which are bounded by 2.: | 1 + 3⋅arg1 |
: | 3⋅arg1 |
: | 2 + 3⋅arg1 |
17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] |
19 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 17, 19 using the following ranking functions, which are bounded by −1.
: | 0 |
: | −1 |
: | 1 |
17 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
19 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , }.We remove transition
using the following ranking functions, which are bounded by 3.: | 1 + 2⋅arg1 + arg2 |
: | 2⋅arg1 + arg2 |
: | 2 + 2⋅arg1 + arg2 |
10 | lexWeak[ [0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0] ] |
12 | lexWeak[ [0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 10, 12 using the following ranking functions, which are bounded by −1.
: | 0 |
: | −1 |
: | x7 |
10 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
12 | lexStrict[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , }.We remove transition
using the following ranking functions, which are bounded by 2.: | 1 + 3⋅arg1 |
: | 3⋅arg1 |
: | 2 + 3⋅arg1 |
24 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] |
26 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 24, 26 using the following ranking functions, which are bounded by −2.
: | −1 |
: | −2 |
: | 0 |
24 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
26 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert