by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ − x3 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P ≤ 0 ∧ −1 − arg2P + x3 ≤ 0 ∧ 1 + arg2P − x3 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 | |
1 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ arg2 ≤ 0 ∧ − arg1 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x3 + x3 ≤ 0 ∧ x3 − x3 ≤ 0 | |
1 | 2 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −2 + arg1P − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ − arg1 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ −1 − arg2P + arg2 ≤ 0 ∧ 1 + arg2P − arg2 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x3 + x3 ≤ 0 ∧ x3 − x3 ≤ 0 | |
2 | 3 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x3 + x3 ≤ 0 ∧ x3 − x3 ≤ 0 | |
3 | 4 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x3 + x3 ≤ 0 ∧ x3 − x3 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | − arg1P ≤ 0 ∧ − arg1 ≤ 0 ∧ − x3 ≤ 0 |
2: | − arg1P ≤ 0 ∧ − arg1 ≤ 0 ∧ − x3 ≤ 0 |
3: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 ∧ − x3 ≤ 0 | ||
2 | (2) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 ∧ − x3 ≤ 0 | ||
3 | (3) | TRUE |
0 | 0 1 | |
1 | 1 2 | |
1 | 2 1 | |
2 | 3 2 | |
3 | 4 0 |
1 | 5 | : | − x3 + x3 ≤ 0 ∧ x3 − x3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
2 | 12 | : | − x3 + x3 ≤ 0 ∧ x3 − x3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, , using the following ranking functions, which are bounded by −15.3: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −7 |
: | −7 |
: | −10 |
: | −10 |
: | −10 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − x3 + x3 ≤ 0 ∧ x3 − x3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − x3 + x3 ≤ 0 ∧ x3 − x3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
15 : − x3 + x3 ≤ 0 ∧ x3 − x3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
13 : − x3 + x3 ≤ 0 ∧ x3 − x3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC {
, , }.We remove transitions 15, using the following ranking functions, which are bounded by −1.
: | 1 + 3⋅arg1 |
: | 3⋅arg1 |
: | 2 + 3⋅arg1 |
We remove transition 13 using the following ranking functions, which are bounded by −1.
: | 0 |
: | −1 |
: | 0 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , }.We remove transition
using the following ranking functions, which are bounded by 1.: | 2⋅arg2 |
: | 2⋅arg2 |
: | 1 + 2⋅arg2 |
We remove transition 8 using the following ranking functions, which are bounded by −1.
: | 0 |
: | −1 |
: | 1 |
We remove transition 6 using the following ranking functions, which are bounded by 0.
: | 1 |
: | 0 |
: | 0 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert