LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Invariant Updates

The following invariants are asserted.

0: TRUE
1: arg1P ≤ 02 − arg2P ≤ 0arg1 ≤ 02 − arg2 ≤ 0x4 ≤ 0
2: 2 − arg1P ≤ 02 − arg1 ≤ 0x4 ≤ 0
3: 2 − arg1P ≤ 01 − arg2P ≤ 02 − arg1 ≤ 01 − arg2 ≤ 0x4 ≤ 0
4: arg1P ≤ 01 − arg2P ≤ 01 − arg3P ≤ 0arg4P ≤ 0arg1 ≤ 01 − arg2 ≤ 01 − arg3 ≤ 0arg4 ≤ 0x4 ≤ 0
5: TRUE

The invariants are proved as follows.

IMPACT Invariant Proof

2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
1 13 1: x74 + x74 ≤ 0x74x74 ≤ 0x73 + x73 ≤ 0x73x73 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x65 + x65 ≤ 0x65x65 ≤ 0x4 + x4 ≤ 0x4x4 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
2 20 2: x74 + x74 ≤ 0x74x74 ≤ 0x73 + x73 ≤ 0x73x73 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x65 + x65 ≤ 0x65x65 ≤ 0x4 + x4 ≤ 0x4x4 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
3 27 3: x74 + x74 ≤ 0x74x74 ≤ 0x73 + x73 ≤ 0x73x73 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x65 + x65 ≤ 0x65x65 ≤ 0x4 + x4 ≤ 0x4x4 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
and for every transition t, a duplicate t is considered.

3 Transition Removal

We remove transitions 0, 2, 3, 4, 5, 10, 11, 12 using the following ranking functions, which are bounded by −19.

5: 0
0: 0
1: 0
3: 0
2: 0
4: 0
5: −6
0: −7
1: −8
1_var_snapshot: −8
1*: −8
3: −11
3_var_snapshot: −11
3*: −11
2: −14
4: −14
2_var_snapshot: −14
2*: −14
Hints:
14 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
21 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
28 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
1 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
6 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
7 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
8 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
9 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
0 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
2 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
3 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
4 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
5 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
10 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
11 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
12 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1* 16 1: x74 + x74 ≤ 0x74x74 ≤ 0x73 + x73 ≤ 0x73x73 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x65 + x65 ≤ 0x65x65 ≤ 0x4 + x4 ≤ 0x4x4 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1 14 1_var_snapshot: x74 + x74 ≤ 0x74x74 ≤ 0x73 + x73 ≤ 0x73x73 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x65 + x65 ≤ 0x65x65 ≤ 0x4 + x4 ≤ 0x4x4 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2* 23 2: x74 + x74 ≤ 0x74x74 ≤ 0x73 + x73 ≤ 0x73x73 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x65 + x65 ≤ 0x65x65 ≤ 0x4 + x4 ≤ 0x4x4 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

7 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2 21 2_var_snapshot: x74 + x74 ≤ 0x74x74 ≤ 0x73 + x73 ≤ 0x73x73 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x65 + x65 ≤ 0x65x65 ≤ 0x4 + x4 ≤ 0x4x4 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

8 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3* 30 3: x74 + x74 ≤ 0x74x74 ≤ 0x73 + x73 ≤ 0x73x73 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x65 + x65 ≤ 0x65x65 ≤ 0x4 + x4 ≤ 0x4x4 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

9 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3 28 3_var_snapshot: x74 + x74 ≤ 0x74x74 ≤ 0x73 + x73 ≤ 0x73x73 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x65 + x65 ≤ 0x65x65 ≤ 0x4 + x4 ≤ 0x4x4 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

10 SCC Decomposition

We consider subproblems for each of the 3 SCC(s) of the program graph.

10.1 SCC Subproblem 1/3

Here we consider the SCC { 2, 4, 2_var_snapshot, 2* }.

10.1.1 Transition Removal

We remove transitions 6, 7, 8 using the following ranking functions, which are bounded by −1.

2: −2 + 4⋅arg2
4: 4⋅arg1
2_var_snapshot: −3 + 4⋅arg2
2*: −1 + 4⋅arg2
Hints:
21 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0] ]
23 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0] ]
6 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
7 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
8 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

10.1.2 Transition Removal

We remove transitions 21, 23 using the following ranking functions, which are bounded by −2.

2: −1
4: 0
2_var_snapshot: −2
2*: 0
Hints:
21 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
23 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

10.1.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

10.1.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 20.

10.1.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

10.2 SCC Subproblem 2/3

Here we consider the SCC { 3, 3_var_snapshot, 3* }.

10.2.1 Transition Removal

We remove transition 9 using the following ranking functions, which are bounded by 2.

3: 1 + 3⋅arg4
3_var_snapshot: 3⋅arg4
3*: 2 + 3⋅arg4
Hints:
28 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
30 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
9 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

10.2.2 Transition Removal

We remove transitions 28, 30 using the following ranking functions, which are bounded by −2.

3: −1
3_var_snapshot: arg1
3*: 0
Hints:
28 lexStrict[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
30 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

10.2.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

10.2.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 27.

10.2.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

10.3 SCC Subproblem 3/3

Here we consider the SCC { 1, 1_var_snapshot, 1* }.

10.3.1 Transition Removal

We remove transition 1 using the following ranking functions, which are bounded by 2.

1: 1 + 3⋅arg3
1_var_snapshot: 3⋅arg3
1*: 2 + 3⋅arg3
Hints:
14 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
16 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
1 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

10.3.2 Transition Removal

We remove transitions 14, 16 using the following ranking functions, which are bounded by −1.

1: 0
1_var_snapshot: arg2
1*: 1
Hints:
14 lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
16 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

10.3.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

10.3.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 13.

10.3.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert