by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg3P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ −1 + arg1P − arg2P ≤ 0 ∧ 1 − arg1P + arg2P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 | |
| 1 | 1 | 2: | 1 + arg2 − arg3 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
| 1 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2 + arg3 ≤ 0 ∧ − arg2P + arg3 ≤ 0 ∧ arg2P − arg3 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
| 2 | 3 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1 ≤ 0 ∧ arg2 − arg3 ≤ 0 ∧ − arg2 + arg3 ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ 1 − arg1 + arg2P ≤ 0 ∧ 1 + arg2 − arg3P ≤ 0 ∧ −1 − arg2 + arg3P ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
| 3 | 4 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 |
The following invariants are asserted.
| 0: | TRUE |
| 1: | − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
| 2: | − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
| 3: | TRUE |
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
| 2 | (2) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
| 3 | (3) | TRUE |
| 0 | 0 1 | |
| 1 | 1 2 | |
| 1 | 2 2 | |
| 2 | 3 1 | |
| 3 | 4 0 |
| 1 | 5 | : | − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions , using the following ranking functions, which are bounded by −11.
| 3: | 0 |
| 0: | 0 |
| 1: | 0 |
| 2: | 0 |
| : | −4 |
| : | −5 |
| : | −6 |
| : | −6 |
| : | −6 |
| : | −6 |
| 6 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by −1.
| : | 0 |
| : | arg2 − arg3 |
| : | 0 |
| : | 0 |
| 6 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| 8 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexStrict[ [0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0] ] | |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The new variable __snapshot_1_arg3P is introduced. The transition formulas are extended as follows:
| 6: | __snapshot_1_arg3P ≤ arg3P ∧ arg3P ≤ __snapshot_1_arg3P |
| 8: | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
| : | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
| : | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
The new variable __snapshot_1_arg3 is introduced. The transition formulas are extended as follows:
| 6: | __snapshot_1_arg3 ≤ arg3 ∧ arg3 ≤ __snapshot_1_arg3 |
| 8: | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
| : | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
| : | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
The new variable __snapshot_1_arg2P is introduced. The transition formulas are extended as follows:
| 6: | __snapshot_1_arg2P ≤ arg2P ∧ arg2P ≤ __snapshot_1_arg2P |
| 8: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
| : | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
| : | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
The new variable __snapshot_1_arg2 is introduced. The transition formulas are extended as follows:
| 6: | __snapshot_1_arg2 ≤ arg2 ∧ arg2 ≤ __snapshot_1_arg2 |
| 8: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
| : | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
| : | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
The new variable __snapshot_1_arg1P is introduced. The transition formulas are extended as follows:
| 6: | __snapshot_1_arg1P ≤ arg1P ∧ arg1P ≤ __snapshot_1_arg1P |
| 8: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
| : | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
| : | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
The new variable __snapshot_1_arg1 is introduced. The transition formulas are extended as follows:
| 6: | __snapshot_1_arg1 ≤ arg1 ∧ arg1 ≤ __snapshot_1_arg1 |
| 8: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
| : | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
| : | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
The following invariants are asserted.
| 0: | TRUE |
| 1: | arg2 − arg2P ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
| 2: | − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
| 3: | TRUE |
| : | arg2 − arg2P ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 ∨ − __snapshot_1_arg2P + __snapshot_1_arg3 ≤ 0 ∧ arg2 − arg2P ≤ 0 ∧ 1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2P − arg3 ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
| : | − __snapshot_1_arg2P + __snapshot_1_arg3 ≤ 0 ∧ −1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg1 − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
| : | −1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg1 − arg3 ≤ 0 ∧ − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2 − arg3 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
| : | − __snapshot_1_arg2P + __snapshot_1_arg3 ≤ 0 ∧ arg2 − arg2P ≤ 0 ∧ 1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2P − arg3 ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
The invariants are proved as follows.
| 0 | (3) | TRUE | ||
| 1 | (0) | TRUE | ||
| 2 | (1) | arg2 − arg2P ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
| 3 | (2) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
| 4 | (2) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
| 5 | () | arg2 − arg2P ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
| 6 | () | −1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg1 − arg3 ≤ 0 ∧ − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2 − arg3 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
| 11 | (1) | arg2 − arg2P ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
| 15 | () | − __snapshot_1_arg2P + __snapshot_1_arg3 ≤ 0 ∧ −1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg1 − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
| 16 | () | − __snapshot_1_arg2P + __snapshot_1_arg3 ≤ 0 ∧ arg2 − arg2P ≤ 0 ∧ 1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2P − arg3 ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
| 17 | () | − __snapshot_1_arg2P + __snapshot_1_arg3 ≤ 0 ∧ arg2 − arg2P ≤ 0 ∧ 1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2P − arg3 ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
| 18 | () | −1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg1 − arg3 ≤ 0 ∧ − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2 − arg3 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
| 3 | → 4 |
Hint:
distribute conclusion
|
||||||||
| 11 | → 2 |
Hint:
distribute conclusion
|
||||||||
| 18 | → 6 |
Hint:
distribute conclusion
|
| 0 | 4 1 | Hint: auto | ||||||||||||
| 1 | 0 2 |
Hint:
distribute conclusion
|
||||||||||||
| 2 | 1 3 |
Hint:
distribute conclusion
|
||||||||||||
| 2 | 2 4 |
Hint:
distribute conclusion
|
||||||||||||
| 2 | 5 5 |
Hint:
distribute conclusion
|
||||||||||||
| 4 | 3 11 |
Hint:
distribute conclusion
|
||||||||||||
| 5 | 6 6 |
Hint:
distribute conclusion
|
||||||||||||
| 6 | 15 |
Hint:
distribute conclusion
|
||||||||||||
| 15 | 16 |
Hint:
distribute conclusion
|
||||||||||||
| 16 | 8 17 |
Hint:
distribute conclusion
|
||||||||||||
| 17 | 6 18 |
Hint:
distribute conclusion
|
We remove transition 8 using the following ranking functions, which are bounded by −2.
| : | arg2P − arg3 |
| : | __snapshot_1_arg2P − __snapshot_1_arg3 |
| : | __snapshot_1_arg2P − __snapshot_1_arg3 |
| : | __snapshot_1_arg2P − __snapshot_1_arg3 |
| 6 |
distribute assertion
|
||||
| 8 | lexStrict[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | ||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0] ] | |||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 6 using the following ranking functions, which are bounded by −6.
| : | −1 |
| : | −2 |
| : | −3 |
| : | −4 |
| 6 |
distribute assertion
|
||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert