by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg3P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ −1 + arg1P − arg2P ≤ 0 ∧ 1 − arg1P + arg2P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 | |
1 | 1 | 2: | 1 + arg2 − arg3 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
1 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2 + arg3 ≤ 0 ∧ − arg2P + arg3 ≤ 0 ∧ arg2P − arg3 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
2 | 3 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1 ≤ 0 ∧ arg2 − arg3 ≤ 0 ∧ − arg2 + arg3 ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ 1 − arg1 + arg2P ≤ 0 ∧ 1 + arg2 − arg3P ≤ 0 ∧ −1 − arg2 + arg3P ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
3 | 4 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
2: | − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
3: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
2 | (2) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
3 | (3) | TRUE |
0 | 0 1 | |
1 | 1 2 | |
1 | 2 2 | |
2 | 3 1 | |
3 | 4 0 |
1 | 5 | : | − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, using the following ranking functions, which are bounded by −11.3: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
: | −4 |
: | −5 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
6 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by −1.: | 0 |
: | arg2 − arg3 |
: | 0 |
: | 0 |
6 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
8 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The new variable __snapshot_1_arg3P is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg3P ≤ arg3P ∧ arg3P ≤ __snapshot_1_arg3P |
8: | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
: | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
: | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
The new variable __snapshot_1_arg3 is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg3 ≤ arg3 ∧ arg3 ≤ __snapshot_1_arg3 |
8: | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
: | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
: | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
The new variable __snapshot_1_arg2P is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg2P ≤ arg2P ∧ arg2P ≤ __snapshot_1_arg2P |
8: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
The new variable __snapshot_1_arg2 is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg2 ≤ arg2 ∧ arg2 ≤ __snapshot_1_arg2 |
8: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
The new variable __snapshot_1_arg1P is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg1P ≤ arg1P ∧ arg1P ≤ __snapshot_1_arg1P |
8: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
The new variable __snapshot_1_arg1 is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg1 ≤ arg1 ∧ arg1 ≤ __snapshot_1_arg1 |
8: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
The following invariants are asserted.
0: | TRUE |
1: | arg2 − arg2P ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
2: | − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
3: | TRUE |
: | arg2 − arg2P ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 ∨ − __snapshot_1_arg2P + __snapshot_1_arg3 ≤ 0 ∧ arg2 − arg2P ≤ 0 ∧ 1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2P − arg3 ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
: | − __snapshot_1_arg2P + __snapshot_1_arg3 ≤ 0 ∧ −1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg1 − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
: | −1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg1 − arg3 ≤ 0 ∧ − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2 − arg3 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
: | − __snapshot_1_arg2P + __snapshot_1_arg3 ≤ 0 ∧ arg2 − arg2P ≤ 0 ∧ 1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2P − arg3 ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
The invariants are proved as follows.
0 | (3) | TRUE | ||
1 | (0) | TRUE | ||
2 | (1) | arg2 − arg2P ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
3 | (2) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
4 | (2) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
5 | ( | )arg2 − arg2P ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
6 | ( | )−1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg1 − arg3 ≤ 0 ∧ − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2 − arg3 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
11 | (1) | arg2 − arg2P ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
15 | ( | )− __snapshot_1_arg2P + __snapshot_1_arg3 ≤ 0 ∧ −1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg1 − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
16 | ( | )− __snapshot_1_arg2P + __snapshot_1_arg3 ≤ 0 ∧ arg2 − arg2P ≤ 0 ∧ 1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2P − arg3 ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
17 | ( | )− __snapshot_1_arg2P + __snapshot_1_arg3 ≤ 0 ∧ arg2 − arg2P ≤ 0 ∧ 1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2P − arg3 ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
18 | ( | )−1 − __snapshot_1_arg2P + __snapshot_1_arg3 + arg1 − arg3 ≤ 0 ∧ − __snapshot_1_arg2P + __snapshot_1_arg3 + arg2 − arg3 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
3 | → 4 |
Hint:
distribute conclusion
|
||||||||
11 | → 2 |
Hint:
distribute conclusion
|
||||||||
18 | → 6 |
Hint:
distribute conclusion
|
0 | 4 1 | Hint: auto | ||||||||||||
1 | 0 2 |
Hint:
distribute conclusion
|
||||||||||||
2 | 1 3 |
Hint:
distribute conclusion
|
||||||||||||
2 | 2 4 |
Hint:
distribute conclusion
|
||||||||||||
2 | 5 5 |
Hint:
distribute conclusion
|
||||||||||||
4 | 3 11 |
Hint:
distribute conclusion
|
||||||||||||
5 | 6 6 |
Hint:
distribute conclusion
|
||||||||||||
6 | 15 |
Hint:
distribute conclusion
|
||||||||||||
15 | 16 |
Hint:
distribute conclusion
|
||||||||||||
16 | 8 17 |
Hint:
distribute conclusion
|
||||||||||||
17 | 6 18 |
Hint:
distribute conclusion
|
We remove transition 8 using the following ranking functions, which are bounded by −2.
: | arg2P − arg3 |
: | __snapshot_1_arg2P − __snapshot_1_arg3 |
: | __snapshot_1_arg2P − __snapshot_1_arg3 |
: | __snapshot_1_arg2P − __snapshot_1_arg3 |
6 |
distribute assertion
|
||||
8 | lexStrict[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | ||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0] ] | |||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 6 using the following ranking functions, which are bounded by −6.
: | −1 |
: | −2 |
: | −3 |
: | −4 |
6 |
distribute assertion
|
||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert