by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2P ≤ 0 ∧ 2 − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 | |
1 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1 + arg2 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ − arg1P + arg2 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ arg1 − arg2P ≤ 0 ∧ − arg1 + arg2P ≤ 0 ∧ arg2 − arg3P ≤ 0 ∧ − arg2 + arg3P ≤ 0 ∧ arg2 − arg4P ≤ 0 ∧ − arg2 + arg4P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 | |
2 | 2 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg3 ≤ 0 ∧ arg3 ≤ 0 ∧ − arg4 ≤ 0 ∧ arg4 ≤ 0 ∧ − arg1P + arg2 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ arg1 − arg2P ≤ 0 ∧ − arg1 + arg2P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 | |
2 | 3 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + arg3 ≤ 0 ∧ arg3 ≤ 0 ∧ arg3 − arg4 ≤ 0 ∧ − arg3 + arg4 ≤ 0 ∧ 1 − arg2P + arg2 ≤ 0 ∧ −1 + arg2P − arg2 ≤ 0 ∧ 1 − arg3P + arg3 ≤ 0 ∧ −1 + arg3P − arg3 ≤ 0 ∧ 1 + arg3 − arg4P ≤ 0 ∧ −1 − arg3 + arg4P ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
2 | 4 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg3 ≤ 0 ∧ arg3 ≤ 0 ∧ arg3 − arg4 ≤ 0 ∧ − arg3 + arg4 ≤ 0 ∧ 1 − arg2P + arg2 ≤ 0 ∧ −1 + arg2P − arg2 ≤ 0 ∧ 1 − arg3P + arg3 ≤ 0 ∧ −1 + arg3P − arg3 ≤ 0 ∧ 1 + arg3 − arg4P ≤ 0 ∧ −1 − arg3 + arg4P ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
2 | 5 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg3 ≤ 0 ∧ arg3 − arg4 ≤ 0 ∧ − arg3 + arg4 ≤ 0 ∧ −1 − arg2P + arg2 ≤ 0 ∧ 1 + arg2P − arg2 ≤ 0 ∧ −1 − arg3P + arg3 ≤ 0 ∧ 1 + arg3P − arg3 ≤ 0 ∧ −1 + arg3 − arg4P ≤ 0 ∧ 1 − arg3 + arg4P ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
3 | 6 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 |
1 | 7 | : | − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
2 | 14 | : | − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, using the following ranking functions, which are bounded by −13.3: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
: | −4 |
: | −5 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
15 : − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , }.We remove transition
using the following ranking functions, which are bounded by 0.: | −2 + 4⋅arg1 |
: | 4⋅arg2 − 4⋅arg3 |
: | −3 + 4⋅arg1 |
: | −1 + 4⋅arg1 |
: | 4⋅arg2 − 4⋅arg3 |
: | 4⋅arg2 − 4⋅arg3 |
We remove transitions 8, 10, , using the following ranking functions, which are bounded by −3.
: | −2 |
: | 0 |
: | −3 |
: | −1 |
: | 0 |
: | 0 |
We consider 2 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
The new variable __snapshot_2_arg4P is introduced. The transition formulas are extended as follows:
8: | __snapshot_2_arg4P ≤ __snapshot_2_arg4P ∧ __snapshot_2_arg4P ≤ __snapshot_2_arg4P |
15: | __snapshot_2_arg4P ≤ arg4P ∧ arg4P ≤ __snapshot_2_arg4P |
17: | __snapshot_2_arg4P ≤ __snapshot_2_arg4P ∧ __snapshot_2_arg4P ≤ __snapshot_2_arg4P |
: | __snapshot_2_arg4P ≤ __snapshot_2_arg4P ∧ __snapshot_2_arg4P ≤ __snapshot_2_arg4P |
: | __snapshot_2_arg4P ≤ __snapshot_2_arg4P ∧ __snapshot_2_arg4P ≤ __snapshot_2_arg4P |
The new variable __snapshot_2_arg4 is introduced. The transition formulas are extended as follows:
8: | __snapshot_2_arg4 ≤ __snapshot_2_arg4 ∧ __snapshot_2_arg4 ≤ __snapshot_2_arg4 |
15: | __snapshot_2_arg4 ≤ arg4 ∧ arg4 ≤ __snapshot_2_arg4 |
17: | __snapshot_2_arg4 ≤ __snapshot_2_arg4 ∧ __snapshot_2_arg4 ≤ __snapshot_2_arg4 |
: | __snapshot_2_arg4 ≤ __snapshot_2_arg4 ∧ __snapshot_2_arg4 ≤ __snapshot_2_arg4 |
: | __snapshot_2_arg4 ≤ __snapshot_2_arg4 ∧ __snapshot_2_arg4 ≤ __snapshot_2_arg4 |
The new variable __snapshot_2_arg3P is introduced. The transition formulas are extended as follows:
8: | __snapshot_2_arg3P ≤ __snapshot_2_arg3P ∧ __snapshot_2_arg3P ≤ __snapshot_2_arg3P |
15: | __snapshot_2_arg3P ≤ arg3P ∧ arg3P ≤ __snapshot_2_arg3P |
17: | __snapshot_2_arg3P ≤ __snapshot_2_arg3P ∧ __snapshot_2_arg3P ≤ __snapshot_2_arg3P |
: | __snapshot_2_arg3P ≤ __snapshot_2_arg3P ∧ __snapshot_2_arg3P ≤ __snapshot_2_arg3P |
: | __snapshot_2_arg3P ≤ __snapshot_2_arg3P ∧ __snapshot_2_arg3P ≤ __snapshot_2_arg3P |
The new variable __snapshot_2_arg3 is introduced. The transition formulas are extended as follows:
8: | __snapshot_2_arg3 ≤ __snapshot_2_arg3 ∧ __snapshot_2_arg3 ≤ __snapshot_2_arg3 |
15: | __snapshot_2_arg3 ≤ arg3 ∧ arg3 ≤ __snapshot_2_arg3 |
17: | __snapshot_2_arg3 ≤ __snapshot_2_arg3 ∧ __snapshot_2_arg3 ≤ __snapshot_2_arg3 |
: | __snapshot_2_arg3 ≤ __snapshot_2_arg3 ∧ __snapshot_2_arg3 ≤ __snapshot_2_arg3 |
: | __snapshot_2_arg3 ≤ __snapshot_2_arg3 ∧ __snapshot_2_arg3 ≤ __snapshot_2_arg3 |
The new variable __snapshot_2_arg2P is introduced. The transition formulas are extended as follows:
8: | __snapshot_2_arg2P ≤ __snapshot_2_arg2P ∧ __snapshot_2_arg2P ≤ __snapshot_2_arg2P |
15: | __snapshot_2_arg2P ≤ arg2P ∧ arg2P ≤ __snapshot_2_arg2P |
17: | __snapshot_2_arg2P ≤ __snapshot_2_arg2P ∧ __snapshot_2_arg2P ≤ __snapshot_2_arg2P |
: | __snapshot_2_arg2P ≤ __snapshot_2_arg2P ∧ __snapshot_2_arg2P ≤ __snapshot_2_arg2P |
: | __snapshot_2_arg2P ≤ __snapshot_2_arg2P ∧ __snapshot_2_arg2P ≤ __snapshot_2_arg2P |
The new variable __snapshot_2_arg2 is introduced. The transition formulas are extended as follows:
8: | __snapshot_2_arg2 ≤ __snapshot_2_arg2 ∧ __snapshot_2_arg2 ≤ __snapshot_2_arg2 |
15: | __snapshot_2_arg2 ≤ arg2 ∧ arg2 ≤ __snapshot_2_arg2 |
17: | __snapshot_2_arg2 ≤ __snapshot_2_arg2 ∧ __snapshot_2_arg2 ≤ __snapshot_2_arg2 |
: | __snapshot_2_arg2 ≤ __snapshot_2_arg2 ∧ __snapshot_2_arg2 ≤ __snapshot_2_arg2 |
: | __snapshot_2_arg2 ≤ __snapshot_2_arg2 ∧ __snapshot_2_arg2 ≤ __snapshot_2_arg2 |
The new variable __snapshot_2_arg1P is introduced. The transition formulas are extended as follows:
8: | __snapshot_2_arg1P ≤ __snapshot_2_arg1P ∧ __snapshot_2_arg1P ≤ __snapshot_2_arg1P |
15: | __snapshot_2_arg1P ≤ arg1P ∧ arg1P ≤ __snapshot_2_arg1P |
17: | __snapshot_2_arg1P ≤ __snapshot_2_arg1P ∧ __snapshot_2_arg1P ≤ __snapshot_2_arg1P |
: | __snapshot_2_arg1P ≤ __snapshot_2_arg1P ∧ __snapshot_2_arg1P ≤ __snapshot_2_arg1P |
: | __snapshot_2_arg1P ≤ __snapshot_2_arg1P ∧ __snapshot_2_arg1P ≤ __snapshot_2_arg1P |
The new variable __snapshot_2_arg1 is introduced. The transition formulas are extended as follows:
8: | __snapshot_2_arg1 ≤ __snapshot_2_arg1 ∧ __snapshot_2_arg1 ≤ __snapshot_2_arg1 |
15: | __snapshot_2_arg1 ≤ arg1 ∧ arg1 ≤ __snapshot_2_arg1 |
17: | __snapshot_2_arg1 ≤ __snapshot_2_arg1 ∧ __snapshot_2_arg1 ≤ __snapshot_2_arg1 |
: | __snapshot_2_arg1 ≤ __snapshot_2_arg1 ∧ __snapshot_2_arg1 ≤ __snapshot_2_arg1 |
: | __snapshot_2_arg1 ≤ __snapshot_2_arg1 ∧ __snapshot_2_arg1 ≤ __snapshot_2_arg1 |
The following invariants are asserted.
0: | TRUE |
1: | TRUE |
2: | 1 − arg4 ≤ 0 ∨ 1 ≤ 0 ∨ − arg4 ≤ 0 |
3: | TRUE |
: | FALSE |
: | 1 − arg4 ≤ 0 ∨ 1 − __snapshot_2_arg3 + arg3 ≤ 0 ∧ 1 − __snapshot_2_arg3 ≤ 0 ∧ − arg4 ≤ 0 ∨ − arg4 ≤ 0 |
: | 1 ≤ 0 |
: | 1 ≤ 0 |
: | − __snapshot_2_arg3 + arg3 ≤ 0 ∧ 1 − __snapshot_2_arg3 + arg3 − arg4 ≤ 0 ∧ 1 − arg4 ≤ 0 ∨ − __snapshot_2_arg3 + arg3 ≤ 0 ∧ − arg4 ≤ 0 |
: | 1 ≤ 0 ∨ 1 − __snapshot_2_arg3 + arg3 ≤ 0 ∧ 1 − __snapshot_2_arg3 ≤ 0 ∧ − arg4 ≤ 0 |
The invariants are proved as follows.
0 | (3) | TRUE | ||
1 | (0) | TRUE | ||
2 | (1) | TRUE | ||
3 | (2) | 1 − arg4 ≤ 0 | ||
8 | (1) | TRUE | ||
9 | (2) | 1 ≤ 0 | ||
10 | (2) | 1 ≤ 0 | ||
11 | (2) | − arg4 ≤ 0 | ||
12 | ( | )1 − arg4 ≤ 0 | ||
13 | ( | )− __snapshot_2_arg3 + arg3 ≤ 0 ∧ 1 − __snapshot_2_arg3 + arg3 − arg4 ≤ 0 ∧ 1 − arg4 ≤ 0 | ||
18 | ( | )1 ≤ 0 | ||
19 | ( | )1 − __snapshot_2_arg3 + arg3 ≤ 0 ∧ 1 − __snapshot_2_arg3 ≤ 0 ∧ − arg4 ≤ 0 | ||
20 | ( | )1 − __snapshot_2_arg3 + arg3 ≤ 0 ∧ 1 − __snapshot_2_arg3 ≤ 0 ∧ − arg4 ≤ 0 | ||
21 | ( | )− __snapshot_2_arg3 + arg3 ≤ 0 ∧ − arg4 ≤ 0 | ||
22 | ( | )− __snapshot_2_arg3 + arg3 ≤ 0 ∧ − arg4 ≤ 0 | ||
30 | (1) | TRUE | ||
31 | (2) | 1 ≤ 0 | ||
32 | (2) | 1 ≤ 0 | ||
33 | (2) | − arg4 ≤ 0 | ||
34 | ( | )− arg4 ≤ 0 | ||
35 | ( | )− __snapshot_2_arg3 + arg3 ≤ 0 ∧ − arg4 ≤ 0 | ||
38 | ( | )1 ≤ 0 | ||
39 | ( | )1 − __snapshot_2_arg3 + arg3 ≤ 0 ∧ 1 − __snapshot_2_arg3 ≤ 0 ∧ − arg4 ≤ 0 |
8 | → 2 | |
21 | → 22 | |
30 | → 2 | |
33 | → 11 | |
35 | → 22 | |
39 | → 19 |
0 | 6 1 | |
1 | 0 2 | |
2 | 1 3 | |
3 | 2 8 | |
3 | 3 9 | |
3 | 4 10 | |
3 | 5 11 | |
3 | 14 12 | |
11 | 2 30 | |
11 | 3 31 | |
11 | 4 32 | |
11 | 5 33 | |
11 | 14 34 | |
12 | 15 13 | |
13 | 18 | |
13 | 19 | |
19 | 17 20 | |
20 | 15 21 | |
20 | 15 22 | |
22 | 38 | |
22 | 39 | |
34 | 15 35 |
We remove transition 17 using the following ranking functions, which are bounded by −1.
: | __snapshot_2_arg3 |
: | arg3 |
: | __snapshot_2_arg3 |
: | __snapshot_2_arg3 |
: | __snapshot_2_arg3 |
: | __snapshot_2_arg3 |
We remove transition 15 using the following ranking functions, which are bounded by −8.
: | −1 |
: | −2 |
: | −3 |
: | −4 |
: | −5 |
: | −6 |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert