by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 + arg1P − arg3P ≤ 0 ∧ −1 − arg1P + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 | |
| 1 | 1 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2 + arg3 ≤ 0 ∧ −1 − arg1 ≤ 0 ∧ 1 − arg1P + arg1 ≤ 0 ∧ −1 + arg1P − arg1 ≤ 0 ∧ 2 + arg1 − arg3P ≤ 0 ∧ −2 − arg1 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 | |
| 2 | 2 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 |
The following invariants are asserted.
| 0: | TRUE |
| 1: | − arg2P ≤ 0 ∧ − arg2 ≤ 0 |
| 2: | TRUE |
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | − arg2P ≤ 0 ∧ − arg2 ≤ 0 | ||
| 2 | (2) | TRUE |
| 0 | 0 1 | |
| 1 | 1 1 | |
| 2 | 2 0 |
| 1 | 3 | : | − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions , using the following ranking functions, which are bounded by −11.
| 2: | 0 |
| 0: | 0 |
| 1: | 0 |
| : | −4 |
| : | −5 |
| : | −6 |
| : | −6 |
| : | −6 |
| 4 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
| lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
4 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , }.
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The new variable __snapshot_1_arg3P is introduced. The transition formulas are extended as follows:
| 4: | __snapshot_1_arg3P ≤ arg3P ∧ arg3P ≤ __snapshot_1_arg3P |
| 6: | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
| : | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
The new variable __snapshot_1_arg3 is introduced. The transition formulas are extended as follows:
| 4: | __snapshot_1_arg3 ≤ arg3 ∧ arg3 ≤ __snapshot_1_arg3 |
| 6: | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
| : | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
The new variable __snapshot_1_arg2P is introduced. The transition formulas are extended as follows:
| 4: | __snapshot_1_arg2P ≤ arg2P ∧ arg2P ≤ __snapshot_1_arg2P |
| 6: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
| : | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
The new variable __snapshot_1_arg2 is introduced. The transition formulas are extended as follows:
| 4: | __snapshot_1_arg2 ≤ arg2 ∧ arg2 ≤ __snapshot_1_arg2 |
| 6: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
| : | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
The new variable __snapshot_1_arg1P is introduced. The transition formulas are extended as follows:
| 4: | __snapshot_1_arg1P ≤ arg1P ∧ arg1P ≤ __snapshot_1_arg1P |
| 6: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
| : | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
The new variable __snapshot_1_arg1 is introduced. The transition formulas are extended as follows:
| 4: | __snapshot_1_arg1 ≤ arg1 ∧ arg1 ≤ __snapshot_1_arg1 |
| 6: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
| : | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
The following invariants are asserted.
| 0: | TRUE |
| 1: | −1 − arg1 + arg3 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 |
| 2: | TRUE |
| : | −1 − arg1 + arg3 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 ∨ − __snapshot_1_arg2 + __snapshot_1_arg3 ≤ 0 ∧ −1 − arg1 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg2 + __snapshot_1_arg3 + arg2 − arg3 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 |
| : | −1 − __snapshot_1_arg2 + __snapshot_1_arg3 − arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg2 + __snapshot_1_arg3 + arg2 − arg3 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 |
| : | − __snapshot_1_arg2 + __snapshot_1_arg3 ≤ 0 ∧ −1 − arg1 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg2 + __snapshot_1_arg3 + arg2 − arg3 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 |
The invariants are proved as follows.
| 0 | (2) | TRUE | ||
| 1 | (0) | TRUE | ||
| 2 | (1) | −1 − arg1 + arg3 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 | ||
| 3 | (1) | −1 − arg1 + arg3 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 | ||
| 4 | () | −1 − arg1 + arg3 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 | ||
| 5 | () | −1 − __snapshot_1_arg2 + __snapshot_1_arg3 − arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg2 + __snapshot_1_arg3 + arg2 − arg3 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 | ||
| 12 | () | − __snapshot_1_arg2 + __snapshot_1_arg3 ≤ 0 ∧ −1 − arg1 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg2 + __snapshot_1_arg3 + arg2 − arg3 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 | ||
| 13 | () | − __snapshot_1_arg2 + __snapshot_1_arg3 ≤ 0 ∧ −1 − arg1 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg2 + __snapshot_1_arg3 + arg2 − arg3 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 | ||
| 14 | () | −1 − __snapshot_1_arg2 + __snapshot_1_arg3 − arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg2 + __snapshot_1_arg3 + arg2 − arg3 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 |
| 3 | → 2 |
Hint:
distribute conclusion
|
||||||||
| 14 | → 5 |
Hint:
distribute conclusion
|
| 0 | 2 1 | Hint: auto | ||||||||||
| 1 | 0 2 |
Hint:
distribute conclusion
|
||||||||||
| 2 | 1 3 |
Hint:
distribute conclusion
|
||||||||||
| 2 | 3 4 |
Hint:
distribute conclusion
|
||||||||||
| 4 | 4 5 |
Hint:
distribute conclusion
|
||||||||||
| 5 | 12 |
Hint:
distribute conclusion
|
||||||||||
| 12 | 6 13 |
Hint:
distribute conclusion
|
||||||||||
| 13 | 4 14 |
Hint:
distribute conclusion
|
We remove transition 6 using the following ranking functions, which are bounded by −2.
| : | arg2 − arg3 |
| : | __snapshot_1_arg2 − __snapshot_1_arg3 |
| : | __snapshot_1_arg2 − __snapshot_1_arg3 |
| 4 |
distribute assertion
|
||||
| 6 | lexStrict[ [0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | ||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0] ] |
We remove transition 4 using the following ranking functions, which are bounded by −5.
| : | −1 |
| : | −2 |
| : | −3 |
| 4 |
distribute assertion
|
||||
| lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert