by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ arg1P + arg2P − arg4P ≤ 0 ∧ − arg1P − arg2P + arg4P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 | |
1 | 1 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg3 + arg4 ≤ 0 ∧ −1 − arg1 ≤ 0 ∧ −1 − arg2 ≤ 0 ∧ 1 − arg1P + arg1 ≤ 0 ∧ −1 + arg1P − arg1 ≤ 0 ∧ 1 − arg2P + arg2 ≤ 0 ∧ −1 + arg2P − arg2 ≤ 0 ∧ 2 + arg1 + arg2 − arg4P ≤ 0 ∧ −2 − arg1 − arg2 + arg4P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 | |
2 | 2 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
2: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
2 | (2) | TRUE |
0 | 0 1 | |
1 | 1 1 | |
2 | 2 0 |
1 | 3 | : | − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, using the following ranking functions, which are bounded by −11.2: | 0 |
0: | 0 |
1: | 0 |
: | −4 |
: | −5 |
: | −6 |
: | −6 |
: | −6 |
4 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
4 : − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , }.We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The new variable __snapshot_1_arg4P is introduced. The transition formulas are extended as follows:
4: | __snapshot_1_arg4P ≤ arg4P ∧ arg4P ≤ __snapshot_1_arg4P |
6: | __snapshot_1_arg4P ≤ __snapshot_1_arg4P ∧ __snapshot_1_arg4P ≤ __snapshot_1_arg4P |
: | __snapshot_1_arg4P ≤ __snapshot_1_arg4P ∧ __snapshot_1_arg4P ≤ __snapshot_1_arg4P |
The new variable __snapshot_1_arg4 is introduced. The transition formulas are extended as follows:
4: | __snapshot_1_arg4 ≤ arg4 ∧ arg4 ≤ __snapshot_1_arg4 |
6: | __snapshot_1_arg4 ≤ __snapshot_1_arg4 ∧ __snapshot_1_arg4 ≤ __snapshot_1_arg4 |
: | __snapshot_1_arg4 ≤ __snapshot_1_arg4 ∧ __snapshot_1_arg4 ≤ __snapshot_1_arg4 |
The new variable __snapshot_1_arg3P is introduced. The transition formulas are extended as follows:
4: | __snapshot_1_arg3P ≤ arg3P ∧ arg3P ≤ __snapshot_1_arg3P |
6: | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
: | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
The new variable __snapshot_1_arg3 is introduced. The transition formulas are extended as follows:
4: | __snapshot_1_arg3 ≤ arg3 ∧ arg3 ≤ __snapshot_1_arg3 |
6: | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
: | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
The new variable __snapshot_1_arg2P is introduced. The transition formulas are extended as follows:
4: | __snapshot_1_arg2P ≤ arg2P ∧ arg2P ≤ __snapshot_1_arg2P |
6: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
The new variable __snapshot_1_arg2 is introduced. The transition formulas are extended as follows:
4: | __snapshot_1_arg2 ≤ arg2 ∧ arg2 ≤ __snapshot_1_arg2 |
6: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
The new variable __snapshot_1_arg1P is introduced. The transition formulas are extended as follows:
4: | __snapshot_1_arg1P ≤ arg1P ∧ arg1P ≤ __snapshot_1_arg1P |
6: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
The new variable __snapshot_1_arg1 is introduced. The transition formulas are extended as follows:
4: | __snapshot_1_arg1 ≤ arg1 ∧ arg1 ≤ __snapshot_1_arg1 |
6: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
The following invariants are asserted.
0: | TRUE |
1: | arg3 − arg3P ≤ 0 ∧ arg2 + arg3 − arg3P − arg4 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
2: | TRUE |
: | arg3 − arg3P ≤ 0 ∧ arg2 + arg3 − arg3P − arg4 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 ∨ arg3 − arg3P ≤ 0 ∧ 1 + __snapshot_1_arg2 − __snapshot_1_arg3P − arg2 + arg3P ≤ 0 ∧ arg2 + arg3 − arg3P − arg4 ≤ 0 ∧ 1 + __snapshot_1_arg2 − __snapshot_1_arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
: | arg3 − arg3P ≤ 0 ∧ __snapshot_1_arg2 − __snapshot_1_arg3P − arg2 + arg3P ≤ 0 ∧ __snapshot_1_arg2 − __snapshot_1_arg3P + arg3 − arg4 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
: | arg3 − arg3P ≤ 0 ∧ 1 + __snapshot_1_arg2 − __snapshot_1_arg3P − arg2 + arg3P ≤ 0 ∧ arg2 + arg3 − arg3P − arg4 ≤ 0 ∧ 1 + __snapshot_1_arg2 − __snapshot_1_arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
The invariants are proved as follows.
0 | (2) | TRUE | ||
1 | (0) | TRUE | ||
2 | (1) | arg3 − arg3P ≤ 0 ∧ arg2 + arg3 − arg3P − arg4 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
3 | (1) | arg3 − arg3P ≤ 0 ∧ arg2 + arg3 − arg3P − arg4 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
4 | ( | )arg3 − arg3P ≤ 0 ∧ arg2 + arg3 − arg3P − arg4 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
5 | ( | )arg3 − arg3P ≤ 0 ∧ __snapshot_1_arg2 − __snapshot_1_arg3P − arg2 + arg3P ≤ 0 ∧ __snapshot_1_arg2 − __snapshot_1_arg3P + arg3 − arg4 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
12 | ( | )arg3 − arg3P ≤ 0 ∧ 1 + __snapshot_1_arg2 − __snapshot_1_arg3P − arg2 + arg3P ≤ 0 ∧ arg2 + arg3 − arg3P − arg4 ≤ 0 ∧ 1 + __snapshot_1_arg2 − __snapshot_1_arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
13 | ( | )arg3 − arg3P ≤ 0 ∧ 1 + __snapshot_1_arg2 − __snapshot_1_arg3P − arg2 + arg3P ≤ 0 ∧ arg2 + arg3 − arg3P − arg4 ≤ 0 ∧ 1 + __snapshot_1_arg2 − __snapshot_1_arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
14 | ( | )arg3 − arg3P ≤ 0 ∧ __snapshot_1_arg2 − __snapshot_1_arg3P − arg2 + arg3P ≤ 0 ∧ __snapshot_1_arg2 − __snapshot_1_arg3P + arg3 − arg4 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
3 | → 2 |
Hint:
distribute conclusion
|
||||||||||
14 | → 5 |
Hint:
distribute conclusion
|
0 | 2 1 | Hint: auto | ||||||||||||
1 | 0 2 |
Hint:
distribute conclusion
|
||||||||||||
2 | 1 3 |
Hint:
distribute conclusion
|
||||||||||||
2 | 3 4 |
Hint:
distribute conclusion
|
||||||||||||
4 | 4 5 |
Hint:
distribute conclusion
|
||||||||||||
5 | 12 |
Hint:
distribute conclusion
|
||||||||||||
12 | 6 13 |
Hint:
distribute conclusion
|
||||||||||||
13 | 4 14 |
Hint:
distribute conclusion
|
We remove transition 6 using the following ranking functions, which are bounded by −1.
: | − arg2 + arg3P |
: | − __snapshot_1_arg2 + __snapshot_1_arg3P |
: | − __snapshot_1_arg2 + __snapshot_1_arg3P |
4 |
distribute assertion
|
||||
6 | lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | ||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] ] |
We remove transition 4 using the following ranking functions, which are bounded by −5.
: | −1 |
: | −2 |
: | −3 |
4 |
distribute assertion
|
||||
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert