by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ arg1P + arg2P − arg3P ≤ 0 ∧ − arg1P − arg2P + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 | |
1 | 1 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg3 ≤ 0 ∧ 1 − arg1 + arg2 ≤ 0 ∧ −1 − arg1P + arg1 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ −1 + arg1 + arg2 − arg3P ≤ 0 ∧ 1 − arg1 − arg2 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 | |
1 | 2 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg3 ≤ 0 ∧ 1 + arg1 − arg2 ≤ 0 ∧ −1 − arg2P + arg2 ≤ 0 ∧ 1 + arg2P − arg2 ≤ 0 ∧ −1 + arg1 + arg2 − arg3P ≤ 0 ∧ 1 − arg1 − arg2 + arg3P ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
1 | 3 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg3 ≤ 0 ∧ arg1 − arg2 ≤ 0 ∧ − arg1 + arg2 ≤ 0 ∧ −1 − arg1P + arg1 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ arg1 − arg2P ≤ 0 ∧ − arg1 + arg2P ≤ 0 ∧ −1 + 2⋅arg1 − arg3P ≤ 0 ∧ 1 − 2⋅arg1 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 | |
2 | 4 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 |
1 | 5 | : | − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, using the following ranking functions, which are bounded by −11.2: | 0 |
0: | 0 |
1: | 0 |
: | −4 |
: | −5 |
: | −6 |
: | −6 |
: | −6 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , }.We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The new variable __snapshot_1_arg3P is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg3P ≤ arg3P ∧ arg3P ≤ __snapshot_1_arg3P |
8: | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
: | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
: | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
: | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
The new variable __snapshot_1_arg3 is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg3 ≤ arg3 ∧ arg3 ≤ __snapshot_1_arg3 |
8: | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
: | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
: | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
: | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
The new variable __snapshot_1_arg2P is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg2P ≤ arg2P ∧ arg2P ≤ __snapshot_1_arg2P |
8: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
The new variable __snapshot_1_arg2 is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg2 ≤ arg2 ∧ arg2 ≤ __snapshot_1_arg2 |
8: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
The new variable __snapshot_1_arg1P is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg1P ≤ arg1P ∧ arg1P ≤ __snapshot_1_arg1P |
8: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
The new variable __snapshot_1_arg1 is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg1 ≤ arg1 ∧ arg1 ≤ __snapshot_1_arg1 |
8: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
The following invariants are asserted.
0: | TRUE |
1: | −1 − arg1 − arg2 + arg3 ≤ 0 ∧ −1 − 2⋅arg1 ≤ 0 ∨ −2 − 2⋅arg1 + arg3 ≤ 0 ∧ −1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 + arg1 − arg2 ≤ 0 ∨ 1 ≤ 0 |
2: | TRUE |
: | −1 − arg1 − arg2 + arg3 ≤ 0 ∧ −1 − 2⋅arg1 ≤ 0 ∨ −1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ 1 − __snapshot_1_arg1 + __snapshot_1_arg2 + arg1 − arg2 ≤ 0 ∧ 1 + arg1 − arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 ≤ 0 ∨ −1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 ∧ arg1 − arg2 ≤ 0 ∨ −1 − arg1 − arg2 + arg3 ≤ 0 ∧ arg1 − arg2 ≤ 0 ∨ −1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 |
: | − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg3 ≤ 0 ∧ −1 − __snapshot_1_arg1 − __snapshot_1_arg2 − arg1 + arg2 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 + 2⋅arg1 − 2⋅arg2 ≤ 0 ∨ − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg3 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 + 2⋅arg1 − 2⋅arg2 ≤ 0 ∧ 1 + arg1 − arg2 ≤ 0 ∨ − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg3 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 + 2⋅arg1 − 2⋅arg2 ≤ 0 ∧ arg1 − arg2 ≤ 0 ∨ − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg3 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 + 2⋅arg1 − 2⋅arg2 ≤ 0 |
: | −1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 ∨ −1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 ∧ arg1 − arg2 ≤ 0 ∨ −1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ 1 − __snapshot_1_arg1 + __snapshot_1_arg2 + arg1 − arg2 ≤ 0 ∧ 1 + arg1 − arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 ≤ 0 ∨ 1 ≤ 0 |
The invariants are proved as follows.
0 | (2) | TRUE | ||
1 | (0) | TRUE | ||
2 | (1) | −1 − arg1 − arg2 + arg3 ≤ 0 ∧ −1 − 2⋅arg1 ≤ 0 | ||
3 | (1) | −1 − arg1 − arg2 + arg3 ≤ 0 ∧ −1 − 2⋅arg1 ≤ 0 | ||
4 | (1) | −1 − arg1 − arg2 + arg3 ≤ 0 ∧ −1 − 2⋅arg1 ≤ 0 | ||
5 | (1) | −2 − 2⋅arg1 + arg3 ≤ 0 ∧ −1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 + arg1 − arg2 ≤ 0 | ||
6 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ −1 − 2⋅arg1 ≤ 0 | ||
7 | ( | )− __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg3 ≤ 0 ∧ −1 − __snapshot_1_arg1 − __snapshot_1_arg2 − arg1 + arg2 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 + 2⋅arg1 − 2⋅arg2 ≤ 0 | ||
12 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 | ||
13 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 ∧ arg1 − arg2 ≤ 0 | ||
14 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ 1 − __snapshot_1_arg1 + __snapshot_1_arg2 + arg1 − arg2 ≤ 0 ∧ 1 + arg1 − arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 ≤ 0 | ||
15 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ 1 − __snapshot_1_arg1 + __snapshot_1_arg2 + arg1 − arg2 ≤ 0 ∧ 1 + arg1 − arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 ≤ 0 | ||
16 | ( | )− __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg3 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 + 2⋅arg1 − 2⋅arg2 ≤ 0 ∧ 1 + arg1 − arg2 ≤ 0 | ||
17 | ( | )− __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg3 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 + 2⋅arg1 − 2⋅arg2 ≤ 0 ∧ 1 + arg1 − arg2 ≤ 0 | ||
25 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 ∧ arg1 − arg2 ≤ 0 | ||
26 | ( | )− __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg3 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 + 2⋅arg1 − 2⋅arg2 ≤ 0 ∧ arg1 − arg2 ≤ 0 | ||
27 | ( | )− __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg3 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 + 2⋅arg1 − 2⋅arg2 ≤ 0 ∧ arg1 − arg2 ≤ 0 | ||
51 | (1) | 1 ≤ 0 | ||
52 | (1) | −1 − arg1 − arg2 + arg3 ≤ 0 ∧ −1 − 2⋅arg1 ≤ 0 | ||
53 | (1) | 1 ≤ 0 | ||
54 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ arg1 − arg2 ≤ 0 | ||
55 | ( | )− __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg3 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 + 2⋅arg1 − 2⋅arg2 ≤ 0 ∧ arg1 − arg2 ≤ 0 | ||
58 | ( | )1 ≤ 0 | ||
59 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 | ||
60 | ( | )1 ≤ 0 | ||
61 | ( | )1 ≤ 0 | ||
62 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 | ||
63 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 | ||
64 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 | ||
65 | ( | )− __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg3 ≤ 0 ∧ −2⋅__snapshot_1_arg1 + 2⋅__snapshot_1_arg2 + 2⋅arg1 − 2⋅arg2 ≤ 0 | ||
73 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 | ||
74 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 | ||
75 | ( | )−1 − arg1 − arg2 + arg3 ≤ 0 ∧ 1 − __snapshot_1_arg1 − __snapshot_1_arg2 + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1 − __snapshot_1_arg2 ≤ 0 |
3 | → 2 | |
4 | → 2 | |
16 | → 17 | |
26 | → 27 | |
52 | → 2 | |
55 | → 27 | |
59 | → 12 | |
62 | → 12 | |
63 | → 12 | |
73 | → 12 | |
74 | → 12 | |
75 | → 12 |
0 | 4 1 | |
1 | 0 2 | |
2 | 1 3 | |
2 | 2 4 | |
2 | 3 5 | |
2 | 5 6 | |
5 | 1 51 | |
5 | 2 52 | |
5 | 3 53 | |
5 | 5 54 | |
6 | 6 7 | |
7 | 12 | |
7 | 13 | |
7 | 14 | |
12 | 8 64 | |
13 | 8 25 | |
14 | 8 15 | |
15 | 6 16 | |
15 | 6 17 | |
17 | 58 | |
17 | 59 | |
17 | 60 | |
25 | 6 26 | |
25 | 6 27 | |
27 | 61 | |
27 | 62 | |
27 | 63 | |
54 | 6 55 | |
64 | 6 65 | |
65 | 73 | |
65 | 74 | |
65 | 75 |
We remove transition 8 using the following lexicographic ranking functions, which are bounded by [−2, −2].
: | [arg1 + arg2, 2⋅arg1 − 2⋅arg2] |
: | [__snapshot_1_arg1 + __snapshot_1_arg2, 2⋅__snapshot_1_arg1 − 2⋅__snapshot_1_arg2] |
: | [__snapshot_1_arg1 + __snapshot_1_arg2, 2⋅__snapshot_1_arg1 − 2⋅__snapshot_1_arg2] |
We remove transition 6 using the following ranking functions, which are bounded by −5.
: | −1 |
: | −2 |
: | −3 |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert