by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 | |
1 | 1 | 2: | 1 − arg2 + arg3 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
1 | 2 | 2: | arg2 − arg3 ≤ 0 ∧ 1 − arg1 + arg3 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
2 | 3 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg2 + arg3 ≤ 0 ∧ −1 − arg2P + arg2 ≤ 0 ∧ 1 + arg2P − arg2 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
2 | 4 | 1: | arg2 − arg3 ≤ 0 ∧ arg1 − arg3 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
2 | 5 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg2 − arg3 ≤ 0 ∧ 1 − arg1 + arg3 ≤ 0 ∧ −1 − arg1P + arg1 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 | |
3 | 6 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
2: | − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
3: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
2 | (2) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
3 | (3) | TRUE |
0 | 0 1 | |
1 | 1 2 | |
1 | 2 2 | |
2 | 3 1 | |
2 | 4 1 | |
2 | 5 1 | |
3 | 6 0 |
1 | 7 | : | − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, using the following ranking functions, which are bounded by −11.3: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
: | −4 |
: | −5 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 0.: | arg1 |
: | arg1 |
: | arg1 |
: | arg1 |
We remove transition
using the following ranking functions, which are bounded by 0.: | arg2 |
: | arg2 |
: | arg2 |
: | arg2 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The following invariants are asserted.
0: | TRUE |
1: | − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
2: | − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
3: | TRUE |
: | − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
: | 1 − arg2 + arg3 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 ∨ 1 − arg1 + arg3 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
: | − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
: | 1 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
The invariants are proved as follows.
0 | (3) | TRUE | ||
1 | (0) | TRUE | ||
2 | (1) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
3 | (2) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
4 | (2) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
5 | ( | )− arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
6 | ( | )− arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
11 | (1) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
12 | (1) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
13 | (1) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
18 | ( | )1 − arg2 + arg3 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
19 | ( | )1 − arg1 + arg3 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
20 | ( | )1 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
21 | ( | )1 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
3 | → 4 | |
11 | → 2 | |
12 | → 2 | |
13 | → 2 |
0 | 6 1 | |
1 | 0 2 | |
2 | 1 3 | |
2 | 2 4 | |
2 | 7 5 | |
4 | 3 11 | |
4 | 4 12 | |
4 | 5 13 | |
5 | 8 6 | |
6 | 18 | |
6 | 19 | |
18 | 21 | |
19 | 20 |
We remove transition 8 using the following ranking functions, which are bounded by −6.
: | −1 |
: | −2 |
: | −3 |
: | −4 |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert