by T2Cert
| 0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 | |
| 1 | 1 | 2: | 1 − arg2 + arg3 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
| 1 | 2 | 2: | arg2 − arg3 ≤ 0 ∧ 1 − arg1 + arg3 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
| 2 | 3 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg2 + arg3 ≤ 0 ∧ −1 − arg2P + arg2 ≤ 0 ∧ 1 + arg2P − arg2 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
| 2 | 4 | 1: | arg2 − arg3 ≤ 0 ∧ arg1 − arg3 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
| 2 | 5 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg2 − arg3 ≤ 0 ∧ 1 − arg1 + arg3 ≤ 0 ∧ −1 − arg1P + arg1 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 | |
| 3 | 6 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 |
The following invariants are asserted.
| 0: | TRUE |
| 1: | − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
| 2: | − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
| 3: | TRUE |
The invariants are proved as follows.
| 0 | (0) | TRUE | ||
| 1 | (1) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
| 2 | (2) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
| 3 | (3) | TRUE |
| 0 | 0 1 | |
| 1 | 1 2 | |
| 1 | 2 2 | |
| 2 | 3 1 | |
| 2 | 4 1 | |
| 2 | 5 1 | |
| 3 | 6 0 |
| 1 | 7 | : | − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions , using the following ranking functions, which are bounded by −11.
| 3: | 0 |
| 0: | 0 |
| 1: | 0 |
| 2: | 0 |
| : | −4 |
| : | −5 |
| : | −6 |
| : | −6 |
| : | −6 |
| : | −6 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC { , , , }.
We remove transition using the following ranking functions, which are bounded by 0.
| : | arg1 |
| : | arg1 |
| : | arg1 |
| : | arg1 |
We remove transition using the following ranking functions, which are bounded by 0.
| : | arg2 |
| : | arg2 |
| : | arg2 |
| : | arg2 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The following invariants are asserted.
| 0: | TRUE |
| 1: | − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
| 2: | − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
| 3: | TRUE |
| : | − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
| : | 1 − arg2 + arg3 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 ∨ 1 − arg1 + arg3 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
| : | − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
| : | 1 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
The invariants are proved as follows.
| 0 | (3) | TRUE | ||
| 1 | (0) | TRUE | ||
| 2 | (1) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
| 3 | (2) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
| 4 | (2) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
| 5 | () | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
| 6 | () | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
| 11 | (1) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
| 12 | (1) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
| 13 | (1) | − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
| 18 | () | 1 − arg2 + arg3 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
| 19 | () | 1 − arg1 + arg3 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
| 20 | () | 1 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 | ||
| 21 | () | 1 ≤ 0 ∧ − arg3P ≤ 0 ∧ − arg3 ≤ 0 |
| 3 | → 4 | |
| 11 | → 2 | |
| 12 | → 2 | |
| 13 | → 2 |
| 0 | 6 1 | |
| 1 | 0 2 | |
| 2 | 1 3 | |
| 2 | 2 4 | |
| 2 | 7 5 | |
| 4 | 3 11 | |
| 4 | 4 12 | |
| 4 | 5 13 | |
| 5 | 8 6 | |
| 6 | 18 | |
| 6 | 19 | |
| 18 | 21 | |
| 19 | 20 |
We remove transition 8 using the following ranking functions, which are bounded by −6.
| : | −1 |
| : | −2 |
| : | −3 |
| : | −4 |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert