LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
1 5 1: arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
2 12 2: arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
and for every transition t, a duplicate t is considered.

2 Transition Removal

We remove transitions 0, 4 using the following ranking functions, which are bounded by −13.

3: 0
0: 0
1: 0
2: 0
3: −4
0: −5
1: −6
2: −6
1_var_snapshot: −6
1*: −6
2_var_snapshot: −6
2*: −6

3 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1* 8 1: arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1 6 1_var_snapshot: arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2* 15 2: arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2 13 2_var_snapshot: arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

7 SCC Decomposition

We consider subproblems for each of the 1 SCC(s) of the program graph.

7.1 SCC Subproblem 1/1

Here we consider the SCC { 1, 2, 1_var_snapshot, 1*, 2_var_snapshot, 2* }.

7.1.1 Transition Removal

We remove transitions 1, 3 using the following ranking functions, which are bounded by 0.

1: −3 − 5⋅arg1 + 5⋅arg3
2: 2⋅arg2arg3arg4
1_var_snapshot: −3 − 5⋅arg1 + 5⋅arg3
1*: −3 − 5⋅arg1 + 5⋅arg3
2_var_snapshot: 2⋅arg2arg3arg4
2*: 2⋅arg2arg3arg4

7.1.2 Transition Removal

We remove transitions 6, 8, 13, 2 using the following ranking functions, which are bounded by −3.

1: −2
2: 1
1_var_snapshot: −3
1*: −1
2_var_snapshot: 0
2*: 2

7.1.3 Transition Removal

We remove transition 15 using the following ranking functions, which are bounded by −1.

1: 0
2: −1
1_var_snapshot: 0
1*: 0
2_var_snapshot: 0
2*: 0

7.1.4 Splitting Cut-Point Transitions

We consider 2 subproblems corresponding to sets of cut-point transitions as follows.

7.1.4.1 Cut-Point Subproblem 1/2

Here we consider cut-point transition 5.

7.1.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

7.1.4.2 Cut-Point Subproblem 2/2

Here we consider cut-point transition 12.

7.1.4.2.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert