by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 | |
1 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1 ≤ 0 ∧ 1 − arg2P ≤ 0 ∧ −1 + arg2P ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
2 | 2 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1 − arg2 ≤ 0 ∧ −1 − arg1P + arg1 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 | |
2 | 3 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1 + arg2 ≤ 0 ∧ − arg2P + 2⋅arg2 ≤ 0 ∧ arg2P − 2⋅arg2 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
3 | 4 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | TRUE |
2: | 1 − arg2P ≤ 0 ∧ − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 |
3: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | TRUE | ||
2 | (2) | 1 − arg2P ≤ 0 ∧ − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 | ||
3 | (3) | TRUE |
0 | 0 1 | |
1 | 1 2 | |
2 | 2 1 | |
2 | 3 2 | |
3 | 4 0 |
1 | 5 | : | − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
2 | 12 | : | − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, using the following ranking functions, which are bounded by −13.3: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
: | −4 |
: | −5 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
6 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0] ] |
13 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
15 : − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
13 : − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , }.We remove transitions
, using the following ranking functions, which are bounded by −1.: | 2 + 4⋅arg1 |
: | 4⋅arg1 |
: | 1 + 4⋅arg1 |
: | 3 + 4⋅arg1 |
: | 4⋅arg1 |
: | 4⋅arg1 |
6 | lexWeak[ [0, 0, 0, 0, 0, 0, 4, 0] ] |
8 | lexWeak[ [0, 0, 0, 0, 0, 0, 4, 0] ] |
13 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0] ] |
15 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0] , [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0] , [0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0] ] |
We remove transitions 6, 8 using the following ranking functions, which are bounded by −1.
: | 0 |
: | −4⋅arg2 |
: | −1 |
: | 1 |
: | −1 − 4⋅arg2 |
: | −3⋅arg2 |
6 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
8 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
13 | lexWeak[ [0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0] ] |
15 | lexWeak[ [0, 0, 1, 0, 0, 0, 4, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0] ] |
We remove transition
using the following ranking functions, which are bounded by 5.: | 0 |
: | 1 + 6⋅arg1 − 6⋅arg2 |
: | 0 |
: | 0 |
: | 6⋅arg1 − 6⋅arg2 |
: | −1 + 6⋅arg1 − 6⋅arg2 + 3⋅arg2P |
13 | lexWeak[ [0, 0, 0, 0, 0, 0, 6, 0, 0, 6, 0] ] |
15 | lexWeak[ [3, 0, 0, 0, 0, 0, 6, 0, 0, 6, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 6, 0, 0, 6, 0] , [0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 13 using the following ranking functions, which are bounded by −1.
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | − arg2P |
: | 1 |
13 | lexStrict[ [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
15 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition 15 using the following ranking functions, which are bounded by 0.
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | 0 |
: | arg2 |
15 | lexStrict[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 2 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert