by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 | |
1 | 1 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ −1 − arg1P + arg2 ≤ 0 ∧ 1 + arg1P − arg2 ≤ 0 ∧ arg1 − arg2P ≤ 0 ∧ − arg1 + arg2P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 | |
2 | 2 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 |
1 | 3 | : | − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, using the following ranking functions, which are bounded by −11.2: | 0 |
0: | 0 |
1: | 0 |
: | −4 |
: | −5 |
: | −6 |
: | −6 |
: | −6 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
4 : − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , }.We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The new variable __snapshot_1_arg2P is introduced. The transition formulas are extended as follows:
4: | __snapshot_1_arg2P ≤ arg2P ∧ arg2P ≤ __snapshot_1_arg2P |
6: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
The new variable __snapshot_1_arg2 is introduced. The transition formulas are extended as follows:
4: | __snapshot_1_arg2 ≤ arg2 ∧ arg2 ≤ __snapshot_1_arg2 |
6: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
The new variable __snapshot_1_arg1P is introduced. The transition formulas are extended as follows:
4: | __snapshot_1_arg1P ≤ arg1P ∧ arg1P ≤ __snapshot_1_arg1P |
6: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
The new variable __snapshot_1_arg1 is introduced. The transition formulas are extended as follows:
4: | __snapshot_1_arg1 ≤ arg1 ∧ arg1 ≤ __snapshot_1_arg1 |
6: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
The following invariants are asserted.
0: | TRUE |
1: | arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ − arg1P − arg2P ≤ 0 ∧ − arg2 ≤ 0 ∨ arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ −1 − arg1P + arg2 − arg2P ≤ 0 |
2: | TRUE |
: | arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ − arg1P − arg2P ≤ 0 ∧ − arg2 ≤ 0 ∨ arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ −1 − arg1P + arg2 − arg2P ≤ 0 ∧ 1 − __snapshot_1_arg1P − __snapshot_1_arg2P + arg1P + arg2P ≤ 0 ∧ − __snapshot_1_arg1P − __snapshot_1_arg2P ≤ 0 ∨ arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ −1 − arg1P + arg2 − arg2P ≤ 0 |
: | − __snapshot_1_arg1P − __snapshot_1_arg2P + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1P − __snapshot_1_arg2P ≤ 0 ∧ − arg2 ≤ 0 ∨ − __snapshot_1_arg1P − __snapshot_1_arg2P + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1P − __snapshot_1_arg2P + arg2 ≤ 0 |
: | arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ −1 − arg1P + arg2 − arg2P ≤ 0 ∧ 1 − __snapshot_1_arg1P − __snapshot_1_arg2P + arg1P + arg2P ≤ 0 ∧ − __snapshot_1_arg1P − __snapshot_1_arg2P ≤ 0 |
The invariants are proved as follows.
0 | (2) | TRUE | ||
1 | (0) | TRUE | ||
2 | (1) | arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ − arg1P − arg2P ≤ 0 ∧ − arg2 ≤ 0 | ||
3 | (1) | arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ −1 − arg1P + arg2 − arg2P ≤ 0 | ||
4 | ( | )arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ − arg1P − arg2P ≤ 0 ∧ − arg2 ≤ 0 | ||
5 | ( | )− __snapshot_1_arg1P − __snapshot_1_arg2P + arg1 + arg2 ≤ 0 ∧ − __snapshot_1_arg1P − __snapshot_1_arg2P ≤ 0 ∧ − arg2 ≤ 0 | ||
12 | ( | )arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ −1 − arg1P + arg2 − arg2P ≤ 0 ∧ 1 − __snapshot_1_arg1P − __snapshot_1_arg2P + arg1P + arg2P ≤ 0 ∧ − __snapshot_1_arg1P − __snapshot_1_arg2P ≤ 0 | ||
13 | ( | )arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ −1 − arg1P + arg2 − arg2P ≤ 0 ∧ 1 − __snapshot_1_arg1P − __snapshot_1_arg2P + arg1P + arg2P ≤ 0 ∧ − __snapshot_1_arg1P − __snapshot_1_arg2P ≤ 0 | ||
14 | ( | )− __snapshot_1_arg1P − __snapshot_1_arg2P + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1P − __snapshot_1_arg2P + arg2 ≤ 0 | ||
15 | ( | )− __snapshot_1_arg1P − __snapshot_1_arg2P + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1P − __snapshot_1_arg2P + arg2 ≤ 0 | ||
23 | (1) | arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ −1 − arg1P + arg2 − arg2P ≤ 0 | ||
24 | ( | )arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ −1 − arg1P + arg2 − arg2P ≤ 0 | ||
28 | ( | )arg1 − arg1P + arg2 − arg2P ≤ 0 ∧ −1 − arg1P + arg2 − arg2P ≤ 0 ∧ 1 − __snapshot_1_arg1P − __snapshot_1_arg2P + arg1P + arg2P ≤ 0 ∧ − __snapshot_1_arg1P − __snapshot_1_arg2P ≤ 0 | ||
37 | ( | )− __snapshot_1_arg1P − __snapshot_1_arg2P + arg1 + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg1P − __snapshot_1_arg2P + arg2 ≤ 0 |
14 | → 15 | |
23 | → 3 | |
28 | → 12 | |
37 | → 15 |
0 | 2 1 | |
1 | 0 2 | |
2 | 1 3 | |
2 | 3 4 | |
3 | 1 23 | |
3 | 3 24 | |
4 | 4 5 | |
5 | 12 | |
12 | 6 13 | |
13 | 4 14 | |
13 | 4 15 | |
15 | 28 | |
24 | 4 37 |
We remove transition 6 using the following ranking functions, which are bounded by −2.
: | arg1P + arg2P |
: | __snapshot_1_arg1P + __snapshot_1_arg2P |
: | __snapshot_1_arg1P + __snapshot_1_arg2P |
We remove transition 4 using the following ranking functions, which are bounded by −5.
: | −1 |
: | −2 |
: | −3 |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert