by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x9 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ −1 − 2⋅x10 + x9 ≤ 0 ∧ 1 + 2⋅x10 − x9 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − x22 + x22 ≤ 0 ∧ x22 − x22 ≤ 0 ∧ − x21 + x21 ≤ 0 ∧ x21 − x21 ≤ 0 ∧ − x18 + x18 ≤ 0 ∧ x18 − x18 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − x13 + x13 ≤ 0 ∧ x13 − x13 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
1 | 1 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x13 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ −1 + x13 − 2⋅x14 ≤ 0 ∧ 1 − x13 + 2⋅x14 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ −1 + x13 − 2⋅x14 ≤ 0 ∧ − x13 + 2⋅x14 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ −1 + arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ arg2P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x9 + x9 ≤ 0 ∧ x9 − x9 ≤ 0 ∧ − x22 + x22 ≤ 0 ∧ x22 − x22 ≤ 0 ∧ − x21 + x21 ≤ 0 ∧ x21 − x21 ≤ 0 ∧ − x18 + x18 ≤ 0 ∧ x18 − x18 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x10 + x10 ≤ 0 ∧ x10 − x10 ≤ 0 | |
0 | 2 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x17 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ x17 − 2⋅x18 ≤ 0 ∧ − x17 + 2⋅x18 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − x9 + x9 ≤ 0 ∧ x9 − x9 ≤ 0 ∧ − x22 + x22 ≤ 0 ∧ x22 − x22 ≤ 0 ∧ − x21 + x21 ≤ 0 ∧ x21 − x21 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − x13 + x13 ≤ 0 ∧ x13 − x13 ≤ 0 ∧ − x10 + x10 ≤ 0 ∧ x10 − x10 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 | |
1 | 3 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − x21 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ x21 − 2⋅x22 ≤ 0 ∧ − x21 + 2⋅x22 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ −1 + x21 − 2⋅x22 ≤ 0 ∧ − x21 + 2⋅x22 ≤ 0 ∧ − arg1P ≤ 0 ∧ arg1P ≤ 0 ∧ 1 − arg2P ≤ 0 ∧ −1 + arg2P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x9 + x9 ≤ 0 ∧ x9 − x9 ≤ 0 ∧ − x18 + x18 ≤ 0 ∧ x18 − x18 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − x13 + x13 ≤ 0 ∧ x13 − x13 ≤ 0 ∧ − x10 + x10 ≤ 0 ∧ x10 − x10 ≤ 0 | |
2 | 4 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1 − arg2 ≤ 0 ∧ − arg1 + arg2 ≤ 0 ∧ −1 − arg1P + arg1 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ −1 + arg1 − arg2P ≤ 0 ∧ 1 − arg1 + arg2P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x9 + x9 ≤ 0 ∧ x9 − x9 ≤ 0 ∧ − x22 + x22 ≤ 0 ∧ x22 − x22 ≤ 0 ∧ − x21 + x21 ≤ 0 ∧ x21 − x21 ≤ 0 ∧ − x18 + x18 ≤ 0 ∧ x18 − x18 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − x13 + x13 ≤ 0 ∧ x13 − x13 ≤ 0 ∧ − x10 + x10 ≤ 0 ∧ x10 − x10 ≤ 0 | |
3 | 5 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − x9 + x9 ≤ 0 ∧ x9 − x9 ≤ 0 ∧ − x22 + x22 ≤ 0 ∧ x22 − x22 ≤ 0 ∧ − x21 + x21 ≤ 0 ∧ x21 − x21 ≤ 0 ∧ − x18 + x18 ≤ 0 ∧ x18 − x18 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − x13 + x13 ≤ 0 ∧ x13 − x13 ≤ 0 ∧ − x10 + x10 ≤ 0 ∧ x10 − x10 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 |
2: | TRUE |
3: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 | ||
2 | (2) | TRUE | ||
3 | (3) | TRUE |
0 | 0 1 | |
0 | 2 1 | |
1 | 1 2 | |
1 | 3 2 | |
2 | 4 2 | |
3 | 5 0 |
2 | 6 | : | − x9 + x9 ≤ 0 ∧ x9 − x9 ≤ 0 ∧ − x22 + x22 ≤ 0 ∧ x22 − x22 ≤ 0 ∧ − x21 + x21 ≤ 0 ∧ x21 − x21 ≤ 0 ∧ − x18 + x18 ≤ 0 ∧ x18 − x18 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − x13 + x13 ≤ 0 ∧ x13 − x13 ≤ 0 ∧ − x10 + x10 ≤ 0 ∧ x10 − x10 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, , , , using the following ranking functions, which are bounded by −13.3: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −8 |
: | −8 |
: | −8 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
9 : − x9 + x9 ≤ 0 ∧ x9 − x9 ≤ 0 ∧ − x22 + x22 ≤ 0 ∧ x22 − x22 ≤ 0 ∧ − x21 + x21 ≤ 0 ∧ x21 − x21 ≤ 0 ∧ − x18 + x18 ≤ 0 ∧ x18 − x18 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − x13 + x13 ≤ 0 ∧ x13 − x13 ≤ 0 ∧ − x10 + x10 ≤ 0 ∧ x10 − x10 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
7 : − x9 + x9 ≤ 0 ∧ x9 − x9 ≤ 0 ∧ − x22 + x22 ≤ 0 ∧ x22 − x22 ≤ 0 ∧ − x21 + x21 ≤ 0 ∧ x21 − x21 ≤ 0 ∧ − x18 + x18 ≤ 0 ∧ x18 − x18 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x14 + x14 ≤ 0 ∧ x14 − x14 ≤ 0 ∧ − x13 + x13 ≤ 0 ∧ x13 − x13 ≤ 0 ∧ − x10 + x10 ≤ 0 ∧ x10 − x10 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , }.We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The following invariants are asserted.
0: | TRUE |
1: | 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 |
2: | 1 − arg1 + arg2 ≤ 0 ∨ 1 + arg1 − arg2 ≤ 0 ∨ 1 ≤ 0 |
3: | TRUE |
: | 1 + arg1 − arg2 ≤ 0 ∨ 1 − arg1 + arg2 ≤ 0 |
: | 1 + arg1 − arg2 ≤ 0 ∨ 1 − arg1 + arg2 ≤ 0 |
: | 1 ≤ 0 |
The invariants are proved as follows.
0 | (3) | TRUE | ||
1 | (0) | TRUE | ||
2 | (1) | 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 | ||
3 | (1) | 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 | ||
4 | (2) | 1 − arg1 + arg2 ≤ 0 | ||
5 | (2) | 1 + arg1 − arg2 ≤ 0 | ||
6 | (2) | 1 ≤ 0 | ||
7 | ( | )1 + arg1 − arg2 ≤ 0 | ||
8 | ( | )1 + arg1 − arg2 ≤ 0 | ||
15 | ( | )1 ≤ 0 | ||
22 | (2) | 1 ≤ 0 | ||
23 | ( | )1 − arg1 + arg2 ≤ 0 | ||
24 | ( | )1 − arg1 + arg2 ≤ 0 | ||
29 | ( | )1 ≤ 0 |
2 | → 3 |
0 | 5 1 | |
1 | 0 2 | |
1 | 2 3 | |
3 | 1 4 | |
3 | 3 5 | |
4 | 4 22 | |
4 | 6 23 | |
5 | 4 6 | |
5 | 6 7 | |
7 | 7 8 | |
8 | 15 | |
23 | 7 24 | |
24 | 29 |
We remove transition 7 using the following ranking functions, which are bounded by −5.
: | −1 |
: | −2 |
: | −3 |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert