# LTS Termination Proof

by T2Cert

## Input

Integer Transition System
• Initial Location: 3
• Transitions: (pre-variables and post-variables)  0 0 1: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg4P ≤ 0 ∧ 2 − arg2 ≤ 0 ∧ − arg6P ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 2 − arg2P ≤ 0 ∧ − arg3P ≤ 0 ∧ arg3P ≤ 0 ∧ 2 − arg5P ≤ 0 ∧ −2 + arg5P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x50 + x50 ≤ 0 ∧ x50 − x50 ≤ 0 ∧ − x49 + x49 ≤ 0 ∧ x49 − x49 ≤ 0 ∧ − x39 + x39 ≤ 0 ∧ x39 − x39 ≤ 0 ∧ − x38 + x38 ≤ 0 ∧ x38 − x38 ≤ 0 ∧ − x28 + x28 ≤ 0 ∧ x28 − x28 ≤ 0 ∧ − x27 + x27 ≤ 0 ∧ x27 − x27 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x16 + x16 ≤ 0 ∧ x16 − x16 ≤ 0 1 1 1: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg5 ≤ 0 ∧ 1 + arg3 − arg4 ≤ 0 ∧ 1 − arg4 ≤ 0 ∧ 2 − x6 ≤ 0 ∧ − x16 ≤ 0 ∧ 1 + arg5 − x6 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 4 − arg2P ≤ 0 ∧ 2 − arg2 + arg6 ≤ 0 ∧ 1 − arg3P + arg3 ≤ 0 ∧ −1 + arg3P − arg3 ≤ 0 ∧ 1 − arg5P + arg5 ≤ 0 ∧ −1 + arg5P − arg5 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x50 + x50 ≤ 0 ∧ x50 − x50 ≤ 0 ∧ − x49 + x49 ≤ 0 ∧ x49 − x49 ≤ 0 ∧ − x39 + x39 ≤ 0 ∧ x39 − x39 ≤ 0 ∧ − x38 + x38 ≤ 0 ∧ x38 − x38 ≤ 0 ∧ − x28 + x28 ≤ 0 ∧ x28 − x28 ≤ 0 ∧ − x27 + x27 ≤ 0 ∧ x27 − x27 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 1 2 1: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg5 ≤ 0 ∧ 1 + arg3 − arg4 ≤ 0 ∧ 1 − arg4 ≤ 0 ∧ 2 − x17 ≤ 0 ∧ − x27 ≤ 0 ∧ 1 + arg5 − x17 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 4 − arg2P ≤ 0 ∧ 2 − arg2 + arg6 ≤ 0 ∧ 1 − arg3P + arg3 ≤ 0 ∧ −1 + arg3P − arg3 ≤ 0 ∧ 1 − arg5P + arg5 ≤ 0 ∧ −1 + arg5P − arg5 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x50 + x50 ≤ 0 ∧ x50 − x50 ≤ 0 ∧ − x49 + x49 ≤ 0 ∧ x49 − x49 ≤ 0 ∧ − x39 + x39 ≤ 0 ∧ x39 − x39 ≤ 0 ∧ − x38 + x38 ≤ 0 ∧ x38 − x38 ≤ 0 ∧ − x28 + x28 ≤ 0 ∧ x28 − x28 ≤ 0 ∧ − x16 + x16 ≤ 0 ∧ x16 − x16 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 1 3 1: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg5 ≤ 0 ∧ 1 + arg3 − arg4 ≤ 0 ∧ 1 − arg4 ≤ 0 ∧ 2 − x28 ≤ 0 ∧ − x38 ≤ 0 ∧ 1 + arg5 − x28 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 3 − arg2P ≤ 0 ∧ 2 − arg2 + arg6 ≤ 0 ∧ 1 − arg3P + arg3 ≤ 0 ∧ −1 + arg3P − arg3 ≤ 0 ∧ 1 − arg5P + arg5 ≤ 0 ∧ −1 + arg5P − arg5 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x50 + x50 ≤ 0 ∧ x50 − x50 ≤ 0 ∧ − x49 + x49 ≤ 0 ∧ x49 − x49 ≤ 0 ∧ − x39 + x39 ≤ 0 ∧ x39 − x39 ≤ 0 ∧ − x27 + x27 ≤ 0 ∧ x27 − x27 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x16 + x16 ≤ 0 ∧ x16 − x16 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 1 4 1: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg5 ≤ 0 ∧ 1 + arg3 − arg4 ≤ 0 ∧ 1 − arg4 ≤ 0 ∧ 2 − x39 ≤ 0 ∧ − x49 ≤ 0 ∧ 1 + arg5 − x39 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 3 − arg2P ≤ 0 ∧ 2 − arg2 + arg6 ≤ 0 ∧ 1 − arg3P + arg3 ≤ 0 ∧ −1 + arg3P − arg3 ≤ 0 ∧ 1 − arg5P + arg5 ≤ 0 ∧ −1 + arg5P − arg5 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x50 + x50 ≤ 0 ∧ x50 − x50 ≤ 0 ∧ − x38 + x38 ≤ 0 ∧ x38 − x38 ≤ 0 ∧ − x28 + x28 ≤ 0 ∧ x28 − x28 ≤ 0 ∧ − x27 + x27 ≤ 0 ∧ x27 − x27 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x16 + x16 ≤ 0 ∧ x16 − x16 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 1 5 2: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg5 ≤ 0 ∧ 1 + arg3 − arg4 ≤ 0 ∧ 1 − arg4 ≤ 0 ∧ 2 − x50 ≤ 0 ∧ − arg2P ≤ 0 ∧ 1 + arg5 − x50 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 2 − arg2 + arg6 ≤ 0 ∧ − arg3P + arg6 ≤ 0 ∧ arg3P − arg6 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x49 + x49 ≤ 0 ∧ x49 − x49 ≤ 0 ∧ − x39 + x39 ≤ 0 ∧ x39 − x39 ≤ 0 ∧ − x38 + x38 ≤ 0 ∧ x38 − x38 ≤ 0 ∧ − x28 + x28 ≤ 0 ∧ x28 − x28 ≤ 0 ∧ − x27 + x27 ≤ 0 ∧ x27 − x27 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x16 + x16 ≤ 0 ∧ x16 − x16 ≤ 0 2 6 2: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 + arg1P − arg1 ≤ 0 ∧ 1 − arg2 + arg3 ≤ 0 ∧ 3 − arg1 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 2 − arg1 + arg3 ≤ 0 ∧ 4 − arg1 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x50 + x50 ≤ 0 ∧ x50 − x50 ≤ 0 ∧ − x49 + x49 ≤ 0 ∧ x49 − x49 ≤ 0 ∧ − x39 + x39 ≤ 0 ∧ x39 − x39 ≤ 0 ∧ − x38 + x38 ≤ 0 ∧ x38 − x38 ≤ 0 ∧ − x28 + x28 ≤ 0 ∧ x28 − x28 ≤ 0 ∧ − x27 + x27 ≤ 0 ∧ x27 − x27 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x16 + x16 ≤ 0 ∧ x16 − x16 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 2 7 2: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 2 + arg1P − arg1 ≤ 0 ∧ arg2 − arg3 ≤ 0 ∧ 3 − arg1 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 2 − arg1 + arg3 ≤ 0 ∧ 4 − arg1 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x50 + x50 ≤ 0 ∧ x50 − x50 ≤ 0 ∧ − x49 + x49 ≤ 0 ∧ x49 − x49 ≤ 0 ∧ − x39 + x39 ≤ 0 ∧ x39 − x39 ≤ 0 ∧ − x38 + x38 ≤ 0 ∧ x38 − x38 ≤ 0 ∧ − x28 + x28 ≤ 0 ∧ x28 − x28 ≤ 0 ∧ − x27 + x27 ≤ 0 ∧ x27 − x27 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x16 + x16 ≤ 0 ∧ x16 − x16 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 3 8 0: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − arg6P + arg6 ≤ 0 ∧ arg6P − arg6 ≤ 0 ∧ − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x50 + x50 ≤ 0 ∧ x50 − x50 ≤ 0 ∧ − x49 + x49 ≤ 0 ∧ x49 − x49 ≤ 0 ∧ − x39 + x39 ≤ 0 ∧ x39 − x39 ≤ 0 ∧ − x38 + x38 ≤ 0 ∧ x38 − x38 ≤ 0 ∧ − x28 + x28 ≤ 0 ∧ x28 − x28 ≤ 0 ∧ − x27 + x27 ≤ 0 ∧ x27 − x27 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x16 + x16 ≤ 0 ∧ x16 − x16 ≤ 0

## Proof

The following invariants are asserted.

 0: TRUE 1: 1 − arg1P ≤ 0 ∧ 2 − arg2P ≤ 0 ∧ − arg4P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 2 − arg2 ≤ 0 ∧ − arg4 ≤ 0 2: 1 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ 2 − x50 ≤ 0 3: TRUE

The invariants are proved as follows.

### IMPACT Invariant Proof

• nodes (location) invariant:  0 (0) TRUE 1 (1) 1 − arg1P ≤ 0 ∧ 2 − arg2P ≤ 0 ∧ − arg4P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 2 − arg2 ≤ 0 ∧ − arg4 ≤ 0 2 (2) 1 − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ 2 − x50 ≤ 0 3 (3) TRUE
• initial node: 3
• cover edges:
• transition edges:  0 0 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 2 2 6 2 2 7 2 3 8 0

### 2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
 1 9 1: − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x50 + x50 ≤ 0 ∧ x50 − x50 ≤ 0 ∧ − x49 + x49 ≤ 0 ∧ x49 − x49 ≤ 0 ∧ − x39 + x39 ≤ 0 ∧ x39 − x39 ≤ 0 ∧ − x38 + x38 ≤ 0 ∧ x38 − x38 ≤ 0 ∧ − x28 + x28 ≤ 0 ∧ x28 − x28 ≤ 0 ∧ − x27 + x27 ≤ 0 ∧ x27 − x27 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x16 + x16 ≤ 0 ∧ x16 − x16 ≤ 0 ∧ − arg6P + arg6P ≤ 0 ∧ arg6P − arg6P ≤ 0 ∧ − arg6 + arg6 ≤ 0 ∧ arg6 − arg6 ≤ 0 ∧ − arg5P + arg5P ≤ 0 ∧ arg5P − arg5P ≤ 0 ∧ − arg5 + arg5 ≤ 0 ∧ arg5 − arg5 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 2 16 2: − x6 + x6 ≤ 0 ∧ x6 − x6 ≤ 0 ∧ − x50 + x50 ≤ 0 ∧ x50 − x50 ≤ 0 ∧ − x49 + x49 ≤ 0 ∧ x49 − x49 ≤ 0 ∧ − x39 + x39 ≤ 0 ∧ x39 − x39 ≤ 0 ∧ − x38 + x38 ≤ 0 ∧ x38 − x38 ≤ 0 ∧ − x28 + x28 ≤ 0 ∧ x28 − x28 ≤ 0 ∧ − x27 + x27 ≤ 0 ∧ x27 − x27 ≤ 0 ∧ − x17 + x17 ≤ 0 ∧ x17 − x17 ≤ 0 ∧ − x16 + x16 ≤ 0 ∧ x16 − x16 ≤ 0 ∧ − arg6P + arg6P ≤ 0 ∧ arg6P − arg6P ≤ 0 ∧ − arg6 + arg6 ≤ 0 ∧ arg6 − arg6 ≤ 0 ∧ − arg5P + arg5P ≤ 0 ∧ arg5P − arg5P ≤ 0 ∧ − arg5 + arg5 ≤ 0 ∧ arg5 − arg5 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
and for every transition t, a duplicate t is considered.

### 3 Transition Removal

We remove transitions 0, 5, 8 using the following ranking functions, which are bounded by −15.

 3: 0 0: 0 1: 0 2: 0 3: −5 0: −6 1: −7 1_var_snapshot: −7 1*: −7 2: −10 2_var_snapshot: −10 2*: −10
Hints:
 10 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 17 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 1 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 2 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 3 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 4 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 6 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 7 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 0 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 5 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 8 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1* 12 1: x6 + x6 ≤ 0x6x6 ≤ 0x50 + x50 ≤ 0x50x50 ≤ 0x49 + x49 ≤ 0x49x49 ≤ 0x39 + x39 ≤ 0x39x39 ≤ 0x38 + x38 ≤ 0x38x38 ≤ 0x28 + x28 ≤ 0x28x28 ≤ 0x27 + x27 ≤ 0x27x27 ≤ 0x17 + x17 ≤ 0x17x17 ≤ 0x16 + x16 ≤ 0x16x16 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1 10 1_var_snapshot: x6 + x6 ≤ 0x6x6 ≤ 0x50 + x50 ≤ 0x50x50 ≤ 0x49 + x49 ≤ 0x49x49 ≤ 0x39 + x39 ≤ 0x39x39 ≤ 0x38 + x38 ≤ 0x38x38 ≤ 0x28 + x28 ≤ 0x28x28 ≤ 0x27 + x27 ≤ 0x27x27 ≤ 0x17 + x17 ≤ 0x17x17 ≤ 0x16 + x16 ≤ 0x16x16 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2* 19 2: x6 + x6 ≤ 0x6x6 ≤ 0x50 + x50 ≤ 0x50x50 ≤ 0x49 + x49 ≤ 0x49x49 ≤ 0x39 + x39 ≤ 0x39x39 ≤ 0x38 + x38 ≤ 0x38x38 ≤ 0x28 + x28 ≤ 0x28x28 ≤ 0x27 + x27 ≤ 0x27x27 ≤ 0x17 + x17 ≤ 0x17x17 ≤ 0x16 + x16 ≤ 0x16x16 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

2 17 2_var_snapshot: x6 + x6 ≤ 0x6x6 ≤ 0x50 + x50 ≤ 0x50x50 ≤ 0x49 + x49 ≤ 0x49x49 ≤ 0x39 + x39 ≤ 0x39x39 ≤ 0x38 + x38 ≤ 0x38x38 ≤ 0x28 + x28 ≤ 0x28x28 ≤ 0x27 + x27 ≤ 0x27x27 ≤ 0x17 + x17 ≤ 0x17x17 ≤ 0x16 + x16 ≤ 0x16x16 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

### 8 SCC Decomposition

We consider subproblems for each of the 2 SCC(s) of the program graph.

### 8.1 SCC Subproblem 1/2

Here we consider the SCC { 2, 2_var_snapshot, 2* }.

### 8.1.1 Transition Removal

We remove transitions 17, 19, 6, 7 using the following ranking functions, which are bounded by 2.

 2: 2 + 3⋅arg1 2_var_snapshot: 3⋅arg1 2*: 4 + 3⋅arg1
Hints:
 17 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] , [0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 19 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] , [0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 6 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 7 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

### 8.1.2 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

### 8.1.2.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 16.

### 8.1.2.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

### 8.2 SCC Subproblem 2/2

Here we consider the SCC { 1, 1_var_snapshot, 1* }.

### 8.2.1 Transition Removal

We remove transitions 1, 2, 3, 4 using the following ranking functions, which are bounded by 2.

 1: 1 − 3⋅arg3 + 3⋅arg4 1_var_snapshot: −3⋅arg3 + 3⋅arg4 1*: 2 − 3⋅arg3 + 3⋅arg4
Hints:
 10 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] 12 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ] 1 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 2 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 3 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 4 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

### 8.2.2 Transition Removal

We remove transitions 10, 12 using the following ranking functions, which are bounded by −1.

 1: 0 1_var_snapshot: − arg1P 1*: arg1P
Hints:
 10 lexStrict[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 12 lexStrict[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

### 8.2.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

### 8.2.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 9.

### 8.2.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

T2Cert

• version: 1.0