by T2Cert
2 | 1 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 4 − arg1P ≤ 0 ∧ − arg3P ≤ 0 ∧ arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − x59 + x59 ≤ 0 ∧ x59 − x59 ≤ 0 ∧ − x52 + x52 ≤ 0 ∧ x52 − x52 ≤ 0 ∧ − x51 + x51 ≤ 0 ∧ x51 − x51 ≤ 0 ∧ − x41 + x41 ≤ 0 ∧ x41 − x41 ≤ 0 ∧ − x37 + x37 ≤ 0 ∧ x37 − x37 ≤ 0 ∧ − x36 + x36 ≤ 0 ∧ x36 − x36 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 | |
1 | 2 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x51 ≤ 0 ∧ 1 − arg2 + x51 ≤ 0 ∧ − x52 ≤ 0 ∧ 3 + arg1P − arg1 ≤ 0 ∧ 4 − arg1 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 4 − arg2P ≤ 0 ∧ 2 − arg1 + arg4 ≤ 0 ∧ − arg3 ≤ 0 ∧ arg3 ≤ 0 ∧ arg4 − arg5P ≤ 0 ∧ − arg4 + arg5P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − x59 + x59 ≤ 0 ∧ x59 − x59 ≤ 0 ∧ − x41 + x41 ≤ 0 ∧ x41 − x41 ≤ 0 ∧ − x37 + x37 ≤ 0 ∧ x37 − x37 ≤ 0 ∧ − x36 + x36 ≤ 0 ∧ x36 − x36 ≤ 0 | |
3 | 3 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1P − arg2 ≤ 0 ∧ 1 − arg3 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 4 − arg2 ≤ 0 ∧ 4 − arg1P ≤ 0 ∧ 2 − arg2 + arg5 ≤ 0 ∧ 4 − arg2 + arg4 ≤ 0 ∧ − arg2P + arg3 ≤ 0 ∧ arg2P − arg3 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − x59 + x59 ≤ 0 ∧ x59 − x59 ≤ 0 ∧ − x52 + x52 ≤ 0 ∧ x52 − x52 ≤ 0 ∧ − x51 + x51 ≤ 0 ∧ x51 − x51 ≤ 0 ∧ − x41 + x41 ≤ 0 ∧ x41 − x41 ≤ 0 ∧ − x37 + x37 ≤ 0 ∧ x37 − x37 ≤ 0 ∧ − x36 + x36 ≤ 0 ∧ x36 − x36 ≤ 0 | |
2 | 4 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1 + arg2P ≤ 0 ∧ − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ −1 + arg1P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − x59 + x59 ≤ 0 ∧ x59 − x59 ≤ 0 ∧ − x52 + x52 ≤ 0 ∧ x52 − x52 ≤ 0 ∧ − x51 + x51 ≤ 0 ∧ x51 − x51 ≤ 0 ∧ − x41 + x41 ≤ 0 ∧ x41 − x41 ≤ 0 ∧ − x37 + x37 ≤ 0 ∧ x37 − x37 ≤ 0 ∧ − x36 + x36 ≤ 0 ∧ x36 − x36 ≤ 0 | |
1 | 5 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x59 ≤ 0 ∧ 1 − arg2 + x59 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg2 ≤ 0 ∧ 3 − arg1 + arg2P ≤ 0 ∧ 4 − arg1 ≤ 0 ∧ 1 − arg2P ≤ 0 ∧ 2 − arg1 + arg4 ≤ 0 ∧ − arg3 ≤ 0 ∧ arg3 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − x52 + x52 ≤ 0 ∧ x52 − x52 ≤ 0 ∧ − x51 + x51 ≤ 0 ∧ x51 − x51 ≤ 0 ∧ − x41 + x41 ≤ 0 ∧ x41 − x41 ≤ 0 ∧ − x37 + x37 ≤ 0 ∧ x37 − x37 ≤ 0 ∧ − x36 + x36 ≤ 0 ∧ x36 − x36 ≤ 0 | |
5 | 6 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x36 + x37 ≤ 0 ∧ 2 − arg1 ≤ 0 ∧ − x37 ≤ 0 ∧ − x41 ≤ 0 ∧ − x36 ≤ 0 ∧ 0 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg2P ≤ 0 ∧ −1 − arg1P + arg1 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − x59 + x59 ≤ 0 ∧ x59 − x59 ≤ 0 ∧ − x52 + x52 ≤ 0 ∧ x52 − x52 ≤ 0 ∧ − x51 + x51 ≤ 0 ∧ x51 − x51 ≤ 0 | |
4 | 7 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − x59 + x59 ≤ 0 ∧ x59 − x59 ≤ 0 ∧ − x52 + x52 ≤ 0 ∧ x52 − x52 ≤ 0 ∧ − x51 + x51 ≤ 0 ∧ x51 − x51 ≤ 0 ∧ − x41 + x41 ≤ 0 ∧ x41 − x41 ≤ 0 ∧ − x37 + x37 ≤ 0 ∧ x37 − x37 ≤ 0 ∧ − x36 + x36 ≤ 0 ∧ x36 − x36 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 | |
6 | 8 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − arg5P + arg5 ≤ 0 ∧ arg5P − arg5 ≤ 0 ∧ − x59 + x59 ≤ 0 ∧ x59 − x59 ≤ 0 ∧ − x52 + x52 ≤ 0 ∧ x52 − x52 ≤ 0 ∧ − x51 + x51 ≤ 0 ∧ x51 − x51 ≤ 0 ∧ − x41 + x41 ≤ 0 ∧ x41 − x41 ≤ 0 ∧ − x37 + x37 ≤ 0 ∧ x37 − x37 ≤ 0 ∧ − x36 + x36 ≤ 0 ∧ x36 − x36 ≤ 0 |
The following invariants are asserted.
1: | 4 − arg1P ≤ 0 ∧ arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ 4 − arg1 ≤ 0 ∧ arg3 ≤ 0 ∧ − arg3 ≤ 0 |
2: | TRUE |
3: | 1 − arg1P ≤ 0 ∧ 4 − arg2P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 4 − arg2 ≤ 0 ∧ 1 − x51 ≤ 0 ∧ − x52 ≤ 0 |
4: | 1 − x51 ≤ 0 ∧ − x52 ≤ 0 |
5: | 1 − arg2P ≤ 0 ∧ 1 − arg2 ≤ 0 |
6: | TRUE |
The invariants are proved as follows.
1 | (1) | 4 − arg1P ≤ 0 ∧ arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ 4 − arg1 ≤ 0 ∧ arg3 ≤ 0 ∧ − arg3 ≤ 0 | ||
2 | (2) | TRUE | ||
3 | (3) | 1 − arg1P ≤ 0 ∧ 4 − arg2P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 4 − arg2 ≤ 0 ∧ 1 − x51 ≤ 0 ∧ − x52 ≤ 0 | ||
4 | (4) | 1 − x51 ≤ 0 ∧ − x52 ≤ 0 | ||
5 | (5) | 1 − arg2P ≤ 0 ∧ 1 − arg2 ≤ 0 | ||
6 | (6) | TRUE |
1 | 2 3 | |
1 | 5 5 | |
2 | 1 1 | |
2 | 4 5 | |
3 | 3 4 | |
4 | 7 4 | |
5 | 6 5 | |
6 | 8 2 |
4 | 9 | : | − x59 + x59 ≤ 0 ∧ x59 − x59 ≤ 0 ∧ − x52 + x52 ≤ 0 ∧ x52 − x52 ≤ 0 ∧ − x51 + x51 ≤ 0 ∧ x51 − x51 ≤ 0 ∧ − x41 + x41 ≤ 0 ∧ x41 − x41 ≤ 0 ∧ − x37 + x37 ≤ 0 ∧ x37 − x37 ≤ 0 ∧ − x36 + x36 ≤ 0 ∧ x36 − x36 ≤ 0 ∧ − arg5P + arg5P ≤ 0 ∧ arg5P − arg5P ≤ 0 ∧ − arg5 + arg5 ≤ 0 ∧ arg5 − arg5 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
5 | 16 | : | − x59 + x59 ≤ 0 ∧ x59 − x59 ≤ 0 ∧ − x52 + x52 ≤ 0 ∧ x52 − x52 ≤ 0 ∧ − x51 + x51 ≤ 0 ∧ x51 − x51 ≤ 0 ∧ − x41 + x41 ≤ 0 ∧ x41 − x41 ≤ 0 ∧ − x37 + x37 ≤ 0 ∧ x37 − x37 ≤ 0 ∧ − x36 + x36 ≤ 0 ∧ x36 − x36 ≤ 0 ∧ − arg5P + arg5P ≤ 0 ∧ arg5P − arg5P ≤ 0 ∧ − arg5 + arg5 ≤ 0 ∧ arg5 − arg5 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, , , , , using the following ranking functions, which are bounded by −19.6: | 0 |
2: | 0 |
1: | 0 |
3: | 0 |
4: | 0 |
5: | 0 |
: | −7 |
: | −8 |
: | −9 |
: | −10 |
: | −11 |
: | −11 |
: | −11 |
: | −14 |
: | −14 |
: | −14 |
10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
12 : − x59 + x59 ≤ 0 ∧ x59 − x59 ≤ 0 ∧ − x52 + x52 ≤ 0 ∧ x52 − x52 ≤ 0 ∧ − x51 + x51 ≤ 0 ∧ x51 − x51 ≤ 0 ∧ − x41 + x41 ≤ 0 ∧ x41 − x41 ≤ 0 ∧ − x37 + x37 ≤ 0 ∧ x37 − x37 ≤ 0 ∧ − x36 + x36 ≤ 0 ∧ x36 − x36 ≤ 0 ∧ − arg5P + arg5P ≤ 0 ∧ arg5P − arg5P ≤ 0 ∧ − arg5 + arg5 ≤ 0 ∧ arg5 − arg5 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
10 : − x59 + x59 ≤ 0 ∧ x59 − x59 ≤ 0 ∧ − x52 + x52 ≤ 0 ∧ x52 − x52 ≤ 0 ∧ − x51 + x51 ≤ 0 ∧ x51 − x51 ≤ 0 ∧ − x41 + x41 ≤ 0 ∧ x41 − x41 ≤ 0 ∧ − x37 + x37 ≤ 0 ∧ x37 − x37 ≤ 0 ∧ − x36 + x36 ≤ 0 ∧ x36 − x36 ≤ 0 ∧ − arg5P + arg5P ≤ 0 ∧ arg5P − arg5P ≤ 0 ∧ − arg5 + arg5 ≤ 0 ∧ arg5 − arg5 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
19 : − x59 + x59 ≤ 0 ∧ x59 − x59 ≤ 0 ∧ − x52 + x52 ≤ 0 ∧ x52 − x52 ≤ 0 ∧ − x51 + x51 ≤ 0 ∧ x51 − x51 ≤ 0 ∧ − x41 + x41 ≤ 0 ∧ x41 − x41 ≤ 0 ∧ − x37 + x37 ≤ 0 ∧ x37 − x37 ≤ 0 ∧ − x36 + x36 ≤ 0 ∧ x36 − x36 ≤ 0 ∧ − arg5P + arg5P ≤ 0 ∧ arg5P − arg5P ≤ 0 ∧ − arg5 + arg5 ≤ 0 ∧ arg5 − arg5 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
17 : − x59 + x59 ≤ 0 ∧ x59 − x59 ≤ 0 ∧ − x52 + x52 ≤ 0 ∧ x52 − x52 ≤ 0 ∧ − x51 + x51 ≤ 0 ∧ x51 − x51 ≤ 0 ∧ − x41 + x41 ≤ 0 ∧ x41 − x41 ≤ 0 ∧ − x37 + x37 ≤ 0 ∧ x37 − x37 ≤ 0 ∧ − x36 + x36 ≤ 0 ∧ x36 − x36 ≤ 0 ∧ − arg5P + arg5P ≤ 0 ∧ arg5P − arg5P ≤ 0 ∧ − arg5 + arg5 ≤ 0 ∧ arg5 − arg5 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC {
, , }.We remove transition
using the following ranking functions, which are bounded by 2.: | 1 + 3⋅arg1 |
: | 3⋅arg1 |
: | 2 + 3⋅arg1 |
10 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] |
12 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 10, 12 using the following ranking functions, which are bounded by −1.
: | 0 |
: | −1 |
: | x51 |
10 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
12 | lexStrict[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , }.We remove transition
using the following ranking functions, which are bounded by 5.: | 1 + 3⋅arg1 |
: | 3⋅arg1 |
: | 2 + 3⋅arg1 |
17 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] |
19 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ] |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transitions 17, 19 using the following ranking functions, which are bounded by −1.
: | 0 |
: | −1 |
: | 1 |
17 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
19 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert