LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Invariant Updates

The following invariants are asserted.

0: TRUE
1: 1 − arg1P ≤ 01 − arg1 ≤ 0
2: 1 − arg1P ≤ 01 − arg1 ≤ 0
3: 1 − arg1P ≤ 01 − arg1 ≤ 0
4: TRUE
6: TRUE
7: TRUE
10: 2 − arg1 ≤ 02 − arg2 ≤ 0
11: TRUE
13: 1 − arg1 ≤ 0arg3 ≤ 01 − x64 ≤ 0
14: TRUE
15: TRUE
16: TRUE

The invariants are proved as follows.

IMPACT Invariant Proof

2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
1 44 1: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
3 51 3: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
4 58 4: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
7 65 7: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
11 72 11: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
14 79 14: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
15 86 15: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
and for every transition t, a duplicate t is considered.

3 Transition Removal

We remove transitions 0, 12, 17, 23, 28, 30, 32, 34, 35, 38, 40, 41, 43 using the following ranking functions, which are bounded by −33.

16: 0
0: 0
1: 0
2: 0
3: 0
4: 0
6: 0
7: 0
10: 0
11: 0
13: 0
14: 0
15: 0
16: −9
0: −10
1: −11
2: −11
3: −11
1_var_snapshot: −11
1*: −11
3_var_snapshot: −11
3*: −11
4: −14
6: −14
4_var_snapshot: −14
4*: −14
7: −17
10: −17
7_var_snapshot: −17
7*: −17
11: −20
13: −20
11_var_snapshot: −20
11*: −20
14: −23
14_var_snapshot: −23
14*: −23
15: −26
15_var_snapshot: −26
15*: −26
Hints:
45 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
52 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
59 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
66 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
73 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
80 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
87 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
1 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
2 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
3 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
4 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
5 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
6 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
7 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
8 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
9 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
10 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
11 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
14 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
15 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
16 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
20 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
21 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
22 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
25 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
26 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
27 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
29 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
31 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
33 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
36 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
37 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
39 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
42 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
0 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
12 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
17 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
23 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
28 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
30 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
32 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
34 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
35 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
38 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
40 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
41 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
43 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1* 47 1: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1 45 1_var_snapshot: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3* 54 3: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

7 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3 52 3_var_snapshot: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

8 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4* 61 4: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

9 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4 59 4_var_snapshot: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

10 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

7* 68 7: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

11 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

7 66 7_var_snapshot: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

12 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

11* 75 11: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

13 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

11 73 11_var_snapshot: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

14 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

14* 82 14: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

15 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

14 80 14_var_snapshot: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

16 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

15* 89 15: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

17 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

15 87 15_var_snapshot: x97 + x97 ≤ 0x97x97 ≤ 0x96 + x96 ≤ 0x96x96 ≤ 0x89 + x89 ≤ 0x89x89 ≤ 0x69 + x69 ≤ 0x69x69 ≤ 0x66 + x66 ≤ 0x66x66 ≤ 0x64 + x64 ≤ 0x64x64 ≤ 0x54 + x54 ≤ 0x54x54 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x37 + x37 ≤ 0x37x37 ≤ 0x217 + x217 ≤ 0x217x217 ≤ 0x214 + x214 ≤ 0x214x214 ≤ 0x211 + x211 ≤ 0x211x211 ≤ 0x208 + x208 ≤ 0x208x208 ≤ 0x205 + x205 ≤ 0x205x205 ≤ 0x199 + x199 ≤ 0x199x199 ≤ 0x196 + x196 ≤ 0x196x196 ≤ 0x190 + x190 ≤ 0x190x190 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x176 + x176 ≤ 0x176x176 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x170 + x170 ≤ 0x170x170 ≤ 0x169 + x169 ≤ 0x169x169 ≤ 0x166 + x166 ≤ 0x166x166 ≤ 0x163 + x163 ≤ 0x163x163 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x153 + x153 ≤ 0x153x153 ≤ 0x152 + x152 ≤ 0x152x152 ≤ 0x148 + x148 ≤ 0x148x148 ≤ 0x147 + x147 ≤ 0x147x147 ≤ 0x146 + x146 ≤ 0x146x146 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x141 + x141 ≤ 0x141x141 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x133 + x133 ≤ 0x133x133 ≤ 0x132 + x132 ≤ 0x132x132 ≤ 0x127 + x127 ≤ 0x127x127 ≤ 0x126 + x126 ≤ 0x126x126 ≤ 0x125 + x125 ≤ 0x125x125 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x103 + x103 ≤ 0x103x103 ≤ 0x102 + x102 ≤ 0x102x102 ≤ 0x101 + x101 ≤ 0x101x101 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

18 SCC Decomposition

We consider subproblems for each of the 6 SCC(s) of the program graph.

18.1 SCC Subproblem 1/6

Here we consider the SCC { 4, 6, 4_var_snapshot, 4* }.

18.1.1 Transition Removal

We remove transitions 14, 15, 27, 37 using the following ranking functions, which are bounded by −2.

4: 1 − 3⋅arg1 + 3⋅arg2
6: −1 − 3⋅arg1 + 3⋅arg2
4_var_snapshot: −3⋅arg1 + 3⋅arg2
4*: 2 − 3⋅arg1 + 3⋅arg2
Hints:
59 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3] ]
61 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3] ]
14 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3] , [0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
15 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
27 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3] , [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
29 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3] ]
37 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3] , [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.1.2 Transition Removal

We remove transitions 59, 29 using the following ranking functions, which are bounded by −1.

4: 1
6: −1
4_var_snapshot: 0
4*: 2
Hints:
59 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
61 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
29 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.1.3 Transition Removal

We remove transition 61 using the following ranking functions, which are bounded by 0.

4: 0
6: 0
4_var_snapshot: 0
4*: 1
Hints:
61 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.1.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

18.1.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 58.

18.1.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

18.2 SCC Subproblem 2/6

Here we consider the SCC { 7, 10, 7_var_snapshot, 7* }.

18.2.1 Transition Removal

We remove transitions 20, 21, 31, 39 using the following ranking functions, which are bounded by −2.

7: 1 − 2⋅arg1 + 2⋅arg2
10: −1 − 2⋅arg1 + 2⋅arg2
7_var_snapshot: −2⋅arg1 + 2⋅arg2
7*: 2 − 2⋅arg1 + 2⋅arg2
Hints:
66 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2] ]
68 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2] ]
20 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
21 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
31 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
33 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2] ]
39 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.2.2 Transition Removal

We remove transitions 66, 33 using the following ranking functions, which are bounded by −2.

7: 0
10: arg2
7_var_snapshot: −1
7*: 1
Hints:
66 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
68 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
33 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.2.3 Transition Removal

We remove transition 68 using the following ranking functions, which are bounded by −1.

7: −1
10: 0
7_var_snapshot: 0
7*: 0
Hints:
68 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.2.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

18.2.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 65.

18.2.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

18.3 SCC Subproblem 3/6

Here we consider the SCC { 14, 14_var_snapshot, 14* }.

18.3.1 Transition Removal

We remove transition 36 using the following ranking functions, which are bounded by −1.

14: 1 − 3⋅arg1 + 3⋅arg2
14_var_snapshot: −3⋅arg1 + 3⋅arg2
14*: 2 − 3⋅arg1 + 3⋅arg2
Hints:
80 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3] ]
82 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3] ]
36 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] , [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.3.2 Transition Removal

We remove transitions 80, 82 using the following ranking functions, which are bounded by −2.

14: −1
14_var_snapshot: −2
14*: 0
Hints:
80 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
82 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.3.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

18.3.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 79.

18.3.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

18.4 SCC Subproblem 4/6

Here we consider the SCC { 15, 15_var_snapshot, 15* }.

18.4.1 Transition Removal

We remove transition 42 using the following ranking functions, which are bounded by −1.

15: 1 − arg2 − 2⋅arg3 + 3⋅arg4
15_var_snapshot: arg2 − 2⋅arg3 + 3⋅arg4
15*: 2 − arg2 − 2⋅arg3 + 3⋅arg4
Hints:
87 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0] ]
89 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0] ]
42 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] , [0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.4.2 Transition Removal

We remove transitions 87, 89 using the following ranking functions, which are bounded by −1.

15: 0
15_var_snapshot: −1
15*: 1
Hints:
87 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
89 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.4.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

18.4.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 86.

18.4.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

18.5 SCC Subproblem 5/6

Here we consider the SCC { 11, 13, 11_var_snapshot, 11* }.

18.5.1 Transition Removal

We remove transitions 25, 26 using the following ranking functions, which are bounded by −4.

11: −1 − 4⋅arg2 + 4⋅arg3
13: −3 − 4⋅arg2 + 4⋅arg3
11_var_snapshot: −2 − 4⋅arg2 + 4⋅arg3
11*: −4⋅arg2 + 4⋅arg3
Hints:
73 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0] ]
75 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0] ]
25 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
26 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.5.2 Transition Removal

We remove transitions 73, 75 using the following ranking functions, which are bounded by −2.

11: −1
13: 0
11_var_snapshot: −2
11*: 0
Hints:
73 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
75 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.5.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

18.5.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 72.

18.5.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

18.6 SCC Subproblem 6/6

Here we consider the SCC { 1, 2, 3, 1_var_snapshot, 1*, 3_var_snapshot, 3* }.

18.6.1 Transition Removal

We remove transitions 1, 2, 5, 6, 7, 8, 9, 10, 11, 16, 22 using the following ranking functions, which are bounded by 7.

1: 5 − 8⋅arg2 + 8⋅arg3
2: −8⋅arg2 + 8⋅arg3
3: −1 − 8⋅arg2 + 8⋅arg4
1_var_snapshot: 4 − 8⋅arg2 + 8⋅arg3
1*: 6 − 8⋅arg2 + 8⋅arg3
3_var_snapshot: −1 − 8⋅arg2 + 8⋅arg4
3*: −1 − 8⋅arg2 + 8⋅arg4
Hints:
45 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0] ]
47 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0] ]
52 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0] ]
54 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0] ]
1 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
2 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
3 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8] ]
4 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 8, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
5 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
6 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
7 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
8 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
9 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
10 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
11 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
16 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
22 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.6.2 Transition Removal

We remove transitions 45, 47, 4 using the following ranking functions, which are bounded by −3.

1: −2
2: 0
3: 0
1_var_snapshot: −3
1*: −1
3_var_snapshot: 0
3*: 0
Hints:
45 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
47 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
52 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
54 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
3 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
4 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.6.3 Transition Removal

We remove transition 3 using the following ranking functions, which are bounded by −298.

1: 0
2: 0
3: 1 − 3⋅arg3
1_var_snapshot: 0
1*: 0
3_var_snapshot: −3⋅arg3
3*: 2 − 3⋅arg3
Hints:
52 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ]
54 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0] ]
3 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.6.4 Transition Removal

We remove transitions 52, 54 using the following ranking functions, which are bounded by −1.

1: 0
2: 0
3: 0
1_var_snapshot: 0
1*: 0
3_var_snapshot: −1
3*: arg1
Hints:
52 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
54 lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

18.6.5 Splitting Cut-Point Transitions

We consider 2 subproblems corresponding to sets of cut-point transitions as follows.

18.6.5.1 Cut-Point Subproblem 1/2

Here we consider cut-point transition 44.

18.6.5.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

18.6.5.2 Cut-Point Subproblem 2/2

Here we consider cut-point transition 51.

18.6.5.2.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert