LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Invariant Updates

The following invariants are asserted.

0: TRUE
1: 1 − arg1P ≤ 01 − arg1 ≤ 0
2: 1 − arg1P ≤ 01 − arg1 ≤ 0
3: TRUE
4: TRUE
5: TRUE
6: 1 − arg1P ≤ 01 − arg1 ≤ 0
7: TRUE
8: 3 − arg3P ≤ 03 − arg3 ≤ 0
9: TRUE
10: 3 − arg3P ≤ 01 − arg1 ≤ 01 − arg2 ≤ 03 − arg3 ≤ 0
11: 2 − arg3P ≤ 02 − arg3 ≤ 0
12: 2 − arg3P ≤ 01 − arg1 ≤ 01 − arg2 ≤ 02 − arg3 ≤ 0
13: TRUE
14: 1 − arg1 ≤ 01 − arg2 ≤ 0
15: TRUE

The invariants are proved as follows.

IMPACT Invariant Proof

2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
1 40 1: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
3 47 3: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
4 54 4: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
5 61 5: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
6 68 6: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
7 75 7: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
9 82 9: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
and for every transition t, a duplicate t is considered.

3 Transition Removal

We remove transitions 0, 2, 4, 6, 18, 20, 21, 24, 26, 27, 30, 34, 39 using the following ranking functions, which are bounded by −33.

15: 0
0: 0
1: 0
2: 0
6: 0
3: 0
8: 0
10: 0
4: 0
11: 0
12: 0
5: 0
13: 0
14: 0
7: 0
9: 0
15: −9
0: −10
1: −11
2: −11
6: −11
1_var_snapshot: −11
1*: −11
6_var_snapshot: −11
6*: −11
3: −14
8: −14
10: −14
3_var_snapshot: −14
3*: −14
4: −17
11: −17
12: −17
4_var_snapshot: −17
4*: −17
5: −20
13: −20
14: −20
5_var_snapshot: −20
5*: −20
7: −23
7_var_snapshot: −23
7*: −23
9: −26
9_var_snapshot: −26
9*: −26

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1* 43 1: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1 41 1_var_snapshot: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3* 50 3: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

7 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3 48 3_var_snapshot: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

8 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4* 57 4: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

9 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4 55 4_var_snapshot: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

10 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5* 64 5: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

11 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5 62 5_var_snapshot: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

12 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6* 71 6: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

13 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6 69 6_var_snapshot: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

14 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

7* 78 7: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

15 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

7 76 7_var_snapshot: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

16 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

9* 85 9: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

17 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

9 83 9_var_snapshot: x99 + x99 ≤ 0x99x99 ≤ 0x95 + x95 ≤ 0x95x95 ≤ 0x91 + x91 ≤ 0x91x91 ≤ 0x189 + x189 ≤ 0x189x189 ≤ 0x188 + x188 ≤ 0x188x188 ≤ 0x187 + x187 ≤ 0x187x187 ≤ 0x184 + x184 ≤ 0x184x184 ≤ 0x183 + x183 ≤ 0x183x183 ≤ 0x182 + x182 ≤ 0x182x182 ≤ 0x179 + x179 ≤ 0x179x179 ≤ 0x178 + x178 ≤ 0x178x178 ≤ 0x177 + x177 ≤ 0x177x177 ≤ 0x173 + x173 ≤ 0x173x173 ≤ 0x172 + x172 ≤ 0x172x172 ≤ 0x171 + x171 ≤ 0x171x171 ≤ 0x167 + x167 ≤ 0x167x167 ≤ 0x162 + x162 ≤ 0x162x162 ≤ 0x161 + x161 ≤ 0x161x161 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x156 + x156 ≤ 0x156x156 ≤ 0x151 + x151 ≤ 0x151x151 ≤ 0x150 + x150 ≤ 0x150x150 ≤ 0x149 + x149 ≤ 0x149x149 ≤ 0x145 + x145 ≤ 0x145x145 ≤ 0x144 + x144 ≤ 0x144x144 ≤ 0x143 + x143 ≤ 0x143x143 ≤ 0x138 + x138 ≤ 0x138x138 ≤ 0x137 + x137 ≤ 0x137x137 ≤ 0x136 + x136 ≤ 0x136x136 ≤ 0x135 + x135 ≤ 0x135x135 ≤ 0x131 + x131 ≤ 0x131x131 ≤ 0x130 + x130 ≤ 0x130x130 ≤ 0x129 + x129 ≤ 0x129x129 ≤ 0x124 + x124 ≤ 0x124x124 ≤ 0x123 + x123 ≤ 0x123x123 ≤ 0x122 + x122 ≤ 0x122x122 ≤ 0x121 + x121 ≤ 0x121x121 ≤ 0x117 + x117 ≤ 0x117x117 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0x115 + x115 ≤ 0x115x115 ≤ 0x111 + x111 ≤ 0x111x111 ≤ 0x110 + x110 ≤ 0x110x110 ≤ 0x109 + x109 ≤ 0x109x109 ≤ 0x105 + x105 ≤ 0x105x105 ≤ 0x104 + x104 ≤ 0x104x104 ≤ 0x100 + x100 ≤ 0x100x100 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

18 SCC Decomposition

We consider subproblems for each of the 6 SCC(s) of the program graph.

18.1 SCC Subproblem 1/6

Here we consider the SCC { 3, 8, 10, 3_var_snapshot, 3* }.

18.1.1 Transition Removal

We remove transitions 19, 22, 23 using the following ranking functions, which are bounded by 6.

3: 6 + 10⋅arg2
8: 2 + 10⋅arg1
10: 10⋅arg1
3_var_snapshot: 4 + 10⋅arg2
3*: 8 + 10⋅arg2

18.1.2 Transition Removal

We remove transition 48 using the following ranking functions, which are bounded by −1.

3: 0
8: 0
10: 0
3_var_snapshot: −1
3*: 1

18.1.3 Transition Removal

We remove transition 50 using the following ranking functions, which are bounded by 0.

3: 0
8: 0
10: 0
3_var_snapshot: 0
3*: 1

18.1.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

18.1.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 47.

18.1.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

18.2 SCC Subproblem 2/6

Here we consider the SCC { 4, 11, 12, 4_var_snapshot, 4* }.

18.2.1 Transition Removal

We remove transitions 25, 28, 29 using the following ranking functions, which are bounded by 4.

4: 3 + 5⋅arg2
11: 1 + 5⋅arg1
12: 5⋅arg1
4_var_snapshot: 2 + 5⋅arg2
4*: 4 + 5⋅arg2

18.2.2 Transition Removal

We remove transition 55 using the following ranking functions, which are bounded by −1.

4: 0
11: 0
12: 0
4_var_snapshot: −1
4*: 1

18.2.3 Transition Removal

We remove transition 57 using the following ranking functions, which are bounded by −1.

4: −1
11: 0
12: 0
4_var_snapshot: 0
4*: 0

18.2.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

18.2.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 54.

18.2.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

18.3 SCC Subproblem 3/6

Here we consider the SCC { 7, 7_var_snapshot, 7* }.

18.3.1 Transition Removal

We remove transition 32 using the following ranking functions, which are bounded by 2.

7: 1 + 3⋅arg1
7_var_snapshot: 3⋅arg1
7*: 2 + 3⋅arg1

18.3.2 Transition Removal

We remove transition 76 using the following ranking functions, which are bounded by −1.

7: 0
7_var_snapshot: −1
7*: 1

18.3.3 Transition Removal

We remove transition 78 using the following ranking functions, which are bounded by −1.

7: −1
7_var_snapshot: 0
7*: 0

18.3.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

18.3.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 75.

18.3.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

18.4 SCC Subproblem 4/6

Here we consider the SCC { 9, 9_var_snapshot, 9* }.

18.4.1 Transition Removal

We remove transition 33 using the following ranking functions, which are bounded by 2.

9: 1 + 3⋅arg1
9_var_snapshot: 3⋅arg1
9*: 2 + 3⋅arg1

18.4.2 Transition Removal

We remove transition 83 using the following ranking functions, which are bounded by −1.

9: 0
9_var_snapshot: −1
9*: 1

18.4.3 Transition Removal

We remove transition 85 using the following ranking functions, which are bounded by 0.

9: 0
9_var_snapshot: 0
9*: 1

18.4.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

18.4.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 82.

18.4.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

18.5 SCC Subproblem 5/6

Here we consider the SCC { 5, 13, 14, 5_var_snapshot, 5* }.

18.5.1 Transition Removal

We remove transitions 31, 35, 36, 37, 38 using the following ranking functions, which are bounded by 3.

5: 2 + 5⋅arg2
13: −1 + 5⋅arg1
14: 5⋅arg2
5_var_snapshot: 1 + 5⋅arg2
5*: 3 + 5⋅arg2

18.5.2 Transition Removal

We remove transition 62 using the following ranking functions, which are bounded by −1.

5: 0
13: 0
14: 0
5_var_snapshot: −1
5*: 1

18.5.3 Transition Removal

We remove transition 64 using the following ranking functions, which are bounded by −1.

5: −1
13: 0
14: 0
5_var_snapshot: 0
5*: 0

18.5.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

18.5.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 61.

18.5.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

18.6 SCC Subproblem 6/6

Here we consider the SCC { 1, 2, 6, 1_var_snapshot, 1*, 6_var_snapshot, 6* }.

18.6.1 Transition Removal

We remove transitions 1, 3, 5, 7, 8, 10, 12, 13, 14, 15, 16, 17 using the following ranking functions, which are bounded by 5.

1: 2 − 6⋅arg2 + 6⋅arg3
2: −6⋅arg2 + 6⋅arg3
6: −2 − 6⋅arg2 + 6⋅arg4
1_var_snapshot: 1 − 6⋅arg2 + 6⋅arg3
1*: 3 − 6⋅arg2 + 6⋅arg3
6_var_snapshot: −2 − 6⋅arg2 + 6⋅arg4
6*: −2 − 6⋅arg2 + 6⋅arg4

18.6.2 Transition Removal

We remove transitions 41, 43, 11 using the following ranking functions, which are bounded by −3.

1: −2
2: 0
6: 0
1_var_snapshot: −3
1*: −1
6_var_snapshot: 0
6*: 0

18.6.3 Transition Removal

We remove transition 9 using the following ranking functions, which are bounded by −298.

1: 0
2: 0
6: 1 − 3⋅arg3
1_var_snapshot: 0
1*: 0
6_var_snapshot: −3⋅arg3
6*: 2 − 3⋅arg3

18.6.4 Transition Removal

We remove transition 69 using the following ranking functions, which are bounded by −1.

1: 0
2: 0
6: 0
1_var_snapshot: 0
1*: 0
6_var_snapshot: −1
6*: arg1P

18.6.5 Transition Removal

We remove transition 71 using the following ranking functions, which are bounded by 0.

1: 0
2: 0
6: 0
1_var_snapshot: 0
1*: 0
6_var_snapshot: 0
6*: arg1

18.6.6 Splitting Cut-Point Transitions

We consider 2 subproblems corresponding to sets of cut-point transitions as follows.

18.6.6.1 Cut-Point Subproblem 1/2

Here we consider cut-point transition 40.

18.6.6.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

18.6.6.2 Cut-Point Subproblem 2/2

Here we consider cut-point transition 68.

18.6.6.2.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert