LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Invariant Updates

The following invariants are asserted.

0: TRUE
1: 1 − arg1P ≤ 04 − arg2P ≤ 01 − arg1 ≤ 04 − arg2 ≤ 0x7 ≤ 0
3: TRUE
4: arg3P ≤ 02 − arg1 ≤ 0arg3 ≤ 0
5: arg1P ≤ 0arg1 ≤ 02 − arg3 ≤ 0x7 ≤ 01 − x34 ≤ 0
6: TRUE

The invariants are proved as follows.

IMPACT Invariant Proof

2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
3 11 3: x7 + x7 ≤ 0x7x7 ≤ 0x34 + x34 ≤ 0x34x34 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
4 18 4: x7 + x7 ≤ 0x7x7 ≤ 0x34 + x34 ≤ 0x34x34 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
5 25 5: x7 + x7 ≤ 0x7x7 ≤ 0x34 + x34 ≤ 0x34x34 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
and for every transition t, a duplicate t is considered.

3 Transition Removal

We remove transitions 0, 2, 6, 10 using the following ranking functions, which are bounded by −19.

6: 0
0: 0
1: 0
5: 0
3: 0
4: 0
6: −6
0: −7
1: −8
5: −9
5_var_snapshot: −9
5*: −9
3: −12
4: −12
3_var_snapshot: −12
3*: −12
4_var_snapshot: −12
4*: −12

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3* 14 3: x7 + x7 ≤ 0x7x7 ≤ 0x34 + x34 ≤ 0x34x34 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3 12 3_var_snapshot: x7 + x7 ≤ 0x7x7 ≤ 0x34 + x34 ≤ 0x34x34 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4* 21 4: x7 + x7 ≤ 0x7x7 ≤ 0x34 + x34 ≤ 0x34x34 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

7 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4 19 4_var_snapshot: x7 + x7 ≤ 0x7x7 ≤ 0x34 + x34 ≤ 0x34x34 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

8 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5* 28 5: x7 + x7 ≤ 0x7x7 ≤ 0x34 + x34 ≤ 0x34x34 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

9 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5 26 5_var_snapshot: x7 + x7 ≤ 0x7x7 ≤ 0x34 + x34 ≤ 0x34x34 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

10 SCC Decomposition

We consider subproblems for each of the 2 SCC(s) of the program graph.

10.1 SCC Subproblem 1/2

Here we consider the SCC { 5, 5_var_snapshot, 5* }.

10.1.1 Transition Removal

We remove transitions 7, 8 using the following ranking functions, which are bounded by 8.

5: 2 + 3⋅arg2
5_var_snapshot: 3⋅arg2
5*: 4 + 3⋅arg2

10.1.2 Transition Removal

We remove transition 9 using the following ranking functions, which are bounded by 8.

5: 2 + 3⋅arg2
5_var_snapshot: 3⋅arg2
5*: 4 + 3⋅arg2

10.1.3 Transition Removal

We remove transition 26 using the following ranking functions, which are bounded by −1.

5: 0
5_var_snapshot: −1
5*: x34

10.1.4 Transition Removal

We remove transition 28 using the following ranking functions, which are bounded by 0.

5: 0
5_var_snapshot: 0
5*: x34

10.1.5 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

10.1.5.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 25.

10.1.5.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

10.2 SCC Subproblem 2/2

Here we consider the SCC { 3, 4, 3_var_snapshot, 3*, 4_var_snapshot, 4* }.

10.2.1 Transition Removal

We remove transition 4 using the following ranking functions, which are bounded by 7.

3: 2 + 4⋅arg1
4: 4⋅arg1
3_var_snapshot: 1 + 4⋅arg1
3*: 3 + 4⋅arg1
4_var_snapshot: 4⋅arg1
4*: 4⋅arg1

10.2.2 Transition Removal

We remove transitions 14, 3 using the following ranking functions, which are bounded by 2.

3: 3
4: 1 − 4⋅arg2 + arg3arg3P
3_var_snapshot: 3
3*: 4
4_var_snapshot: −4⋅arg2 + arg3arg3P
4*: 2 − 4⋅arg2 + arg3arg3P

10.2.3 Transition Removal

We remove transitions 12, 5 using the following ranking functions, which are bounded by −1.

3: 0
4: 1 − 3⋅arg2 + 3⋅arg3
3_var_snapshot: −1
3*: 0
4_var_snapshot: −3⋅arg2 + 3⋅arg3
4*: 2 − 3⋅arg2 + 3⋅arg3

10.2.4 Transition Removal

We remove transitions 19, 21 using the following ranking functions, which are bounded by −1.

3: 0
4: 0
3_var_snapshot: −1
3*: 0
4_var_snapshot: −1
4*: arg1

10.2.5 Splitting Cut-Point Transitions

We consider 2 subproblems corresponding to sets of cut-point transitions as follows.

10.2.5.1 Cut-Point Subproblem 1/2

Here we consider cut-point transition 11.

10.2.5.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

10.2.5.2 Cut-Point Subproblem 2/2

Here we consider cut-point transition 18.

10.2.5.2.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert