by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 27 − arg2P ≤ 0 ∧ −27 + arg2P ≤ 0 ∧ 28 − arg3P ≤ 0 ∧ −28 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 | |
1 | 1 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ −3 + arg1P − arg1 ≤ 0 ∧ 1 − arg3 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 4 − arg1P ≤ 0 ∧ −1 − arg2P + arg2 ≤ 0 ∧ 1 + arg2P − arg2 ≤ 0 ∧ arg2 − arg3P ≤ 0 ∧ − arg2 + arg3P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 | |
1 | 2 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ arg3 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 | |
2 | 3 | 2: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 | |
3 | 4 | 0: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 |
2: | − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
3: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 | ||
2 | (2) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
3 | (3) | TRUE |
0 | 0 1 | |
1 | 1 1 | |
1 | 2 2 | |
2 | 3 2 | |
3 | 4 0 |
1 | 5 | : | − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
2 | 12 | : | − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 |
We remove transitions
, , using the following ranking functions, which are bounded by −15.3: | 0 |
0: | 0 |
1: | 0 |
2: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −7 |
: | −7 |
: | −10 |
: | −10 |
: | −10 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
8 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
6 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
15 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
13 : − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
We consider subproblems for each of the 2 SCC(s) of the program graph.
Here we consider the SCC {
, , }.We remove transitions 13, 15, using the following ranking functions, which are bounded by −1.
: | 1 + 3⋅arg1 |
: | 3⋅arg1 |
: | 2 + 3⋅arg1 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , }.We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
The new variable __snapshot_1_arg3P is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg3P ≤ arg3P ∧ arg3P ≤ __snapshot_1_arg3P |
8: | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
: | __snapshot_1_arg3P ≤ __snapshot_1_arg3P ∧ __snapshot_1_arg3P ≤ __snapshot_1_arg3P |
The new variable __snapshot_1_arg3 is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg3 ≤ arg3 ∧ arg3 ≤ __snapshot_1_arg3 |
8: | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
: | __snapshot_1_arg3 ≤ __snapshot_1_arg3 ∧ __snapshot_1_arg3 ≤ __snapshot_1_arg3 |
The new variable __snapshot_1_arg2P is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg2P ≤ arg2P ∧ arg2P ≤ __snapshot_1_arg2P |
8: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
: | __snapshot_1_arg2P ≤ __snapshot_1_arg2P ∧ __snapshot_1_arg2P ≤ __snapshot_1_arg2P |
The new variable __snapshot_1_arg2 is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg2 ≤ arg2 ∧ arg2 ≤ __snapshot_1_arg2 |
8: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
: | __snapshot_1_arg2 ≤ __snapshot_1_arg2 ∧ __snapshot_1_arg2 ≤ __snapshot_1_arg2 |
The new variable __snapshot_1_arg1P is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg1P ≤ arg1P ∧ arg1P ≤ __snapshot_1_arg1P |
8: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
: | __snapshot_1_arg1P ≤ __snapshot_1_arg1P ∧ __snapshot_1_arg1P ≤ __snapshot_1_arg1P |
The new variable __snapshot_1_arg1 is introduced. The transition formulas are extended as follows:
6: | __snapshot_1_arg1 ≤ arg1 ∧ arg1 ≤ __snapshot_1_arg1 |
8: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
: | __snapshot_1_arg1 ≤ __snapshot_1_arg1 ∧ __snapshot_1_arg1 ≤ __snapshot_1_arg1 |
The following invariants are asserted.
0: | TRUE |
1: | 1 + arg2 − arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 ∨ −1 + arg3 − arg3P ≤ 0 ∧ 1 + arg2 − arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 |
2: | − arg1P ≤ 0 ∧ − arg1 ≤ 0 |
3: | TRUE |
: | 1 + arg2 − arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 ∨ −1 + arg3 − arg3P ≤ 0 ∧ 1 − __snapshot_1_arg3P + arg3P ≤ 0 ∧ 1 + arg2 − arg3P ≤ 0 ∧ − __snapshot_1_arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 ∨ −1 + arg3 − arg3P ≤ 0 ∧ 1 + arg2 − arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 |
: | 1 − __snapshot_1_arg3P + arg2 ≤ 0 ∧ − __snapshot_1_arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 ∨ 1 − __snapshot_1_arg3P + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg3P + arg3 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 |
: | −1 + arg3 − arg3P ≤ 0 ∧ 1 − __snapshot_1_arg3P + arg3P ≤ 0 ∧ 1 + arg2 − arg3P ≤ 0 ∧ − __snapshot_1_arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 |
The invariants are proved as follows.
0 | (3) | TRUE | ||
1 | (0) | TRUE | ||
2 | (1) | 1 + arg2 − arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 | ||
3 | (1) | −1 + arg3 − arg3P ≤ 0 ∧ 1 + arg2 − arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 | ||
4 | (2) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
5 | ( | )1 + arg2 − arg3P ≤ 0 ∧ − arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 | ||
6 | ( | )1 − __snapshot_1_arg3P + arg2 ≤ 0 ∧ − __snapshot_1_arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 | ||
13 | ( | )−1 + arg3 − arg3P ≤ 0 ∧ 1 − __snapshot_1_arg3P + arg3P ≤ 0 ∧ 1 + arg2 − arg3P ≤ 0 ∧ − __snapshot_1_arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 | ||
14 | ( | )−1 + arg3 − arg3P ≤ 0 ∧ 1 − __snapshot_1_arg3P + arg3P ≤ 0 ∧ 1 + arg2 − arg3P ≤ 0 ∧ − __snapshot_1_arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 | ||
15 | ( | )1 − __snapshot_1_arg3P + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg3P + arg3 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 | ||
16 | ( | )1 − __snapshot_1_arg3P + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg3P + arg3 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 | ||
20 | (2) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
27 | (1) | −1 + arg3 − arg3P ≤ 0 ∧ 1 + arg2 − arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 | ||
28 | (2) | − arg1P ≤ 0 ∧ − arg1 ≤ 0 | ||
29 | ( | )−1 + arg3 − arg3P ≤ 0 ∧ 1 + arg2 − arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 | ||
33 | ( | )−1 + arg3 − arg3P ≤ 0 ∧ 1 − __snapshot_1_arg3P + arg3P ≤ 0 ∧ 1 + arg2 − arg3P ≤ 0 ∧ − __snapshot_1_arg3P ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 | ||
42 | ( | )1 − __snapshot_1_arg3P + arg2 ≤ 0 ∧ −1 − __snapshot_1_arg3P + arg3 ≤ 0 ∧ 1 − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 |
15 | → 16 | |
20 | → 4 | |
27 | → 3 | |
28 | → 4 | |
33 | → 13 | |
42 | → 16 |
0 | 4 1 | |
1 | 0 2 | |
2 | 1 3 | |
2 | 2 4 | |
2 | 5 5 | |
3 | 1 27 | |
3 | 2 28 | |
3 | 5 29 | |
4 | 3 20 | |
5 | 6 6 | |
6 | 13 | |
13 | 8 14 | |
14 | 6 15 | |
14 | 6 16 | |
16 | 33 | |
29 | 6 42 |
We remove transition 8 using the following ranking functions, which are bounded by −2.
: | arg3P |
: | __snapshot_1_arg3P |
: | __snapshot_1_arg3P |
We remove transition 6 using the following ranking functions, which are bounded by −5.
: | −1 |
: | −2 |
: | −3 |
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert