by AProVE
f1_0_main_New | 1 | f169_0_exampleMethods_LE: | x1 = _arg1 ∧ x2 = _arg2 ∧ x3 = _arg3 ∧ x1 = _arg1P ∧ x2 = _arg2P ∧ x3 = _arg3P ∧ 10 = _arg3P ∧ 0 = _arg2P ∧ 13 ≤ _arg1P − 1 | |
f169_0_exampleMethods_LE | 2 | f169_0_exampleMethods_LE: | x1 = _x ∧ x2 = _x1 ∧ x3 = _x2 ∧ x1 = _x3 ∧ x2 = _x4 ∧ x3 = _x5 ∧ _x2 − 1 = _x5 ∧ _x1 + 10 = _x4 ∧ _x2 + 4 ≤ _x ∧ 2 ≤ _x3 − 1 ∧ 2 ≤ _x − 1 ∧ _x3 ≤ _x ∧ 0 ≤ _x2 − 1 ∧ −1 ≤ _x1 − 1 | |
__init | 3 | f1_0_main_New: | x1 = _x6 ∧ x2 = _x7 ∧ x3 = _x8 ∧ x1 = _x9 ∧ x2 = _x10 ∧ x3 = _x11 ∧ 0 ≤ 0 |
f1_0_main_New | f1_0_main_New | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 |
f169_0_exampleMethods_LE | f169_0_exampleMethods_LE | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 |
__init | __init | : | x1 = x1 ∧ x2 = x2 ∧ x3 = x3 |
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
}.We remove transition
using the following ranking functions, which are bounded by 0.: | x3 |
There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.