LTS Termination Proof

by AProVE

Input

Integer Transition System

Proof

1 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
f456_0_createList_Return f456_0_createList_Return f456_0_createList_Return: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f6290_0_createList_LE f6290_0_createList_LE f6290_0_createList_LE: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f3783_0__init__LE f3783_0__init__LE f3783_0__init__LE: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f1955_0_random_ArrayAccess f1955_0_random_ArrayAccess f1955_0_random_ArrayAccess: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f1849_0_createList_LE f1849_0_createList_LE f1849_0_createList_LE: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f817_0_createList_Load f817_0_createList_Load f817_0_createList_Load: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f6375_0_hasNext_EQ f6375_0_hasNext_EQ f6375_0_hasNext_EQ: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
__init __init __init: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f3403_0__init__LE f3403_0__init__LE f3403_0__init__LE: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f3059_0__init__GE f3059_0__init__GE f3059_0__init__GE: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f3429_0_createList_Load f3429_0_createList_Load f3429_0_createList_Load: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f4854_0_main_InvokeMethod f4854_0_main_InvokeMethod f4854_0_main_InvokeMethod: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f431_0_createList_Load f431_0_createList_Load f431_0_createList_Load: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f2624_0__init__LE f2624_0__init__LE f2624_0__init__LE: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f1_0_main_Load f1_0_main_Load f1_0_main_Load: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f4706_0_createList_Load f4706_0_createList_Load f4706_0_createList_Load: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f3524_0_createList_Return f3524_0_createList_Return f3524_0_createList_Return: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
f6874_0_equals_NE f6874_0_equals_NE f6874_0_equals_NE: x1 = x1x2 = x2x3 = x3x4 = x4x5 = x5x6 = x6x7 = x7x8 = x8x9 = x9x10 = x10x11 = x11x12 = x12x13 = x13x14 = x14x15 = x15x16 = x16x17 = x17x18 = x18x19 = x19x20 = x20x21 = x21x22 = x22x23 = x23x24 = x24x25 = x25x26 = x26x27 = x27x28 = x28x29 = x29x30 = x30
and for every transition t, a duplicate t is considered.

2 SCC Decomposition

We consider subproblems for each of the 6 SCC(s) of the program graph.

2.1 SCC Subproblem 1/6

Here we consider the SCC { f3403_0__init__LE }.

2.1.1 Transition Removal

We remove transitions 26, 27, 28, 29, 30 using the following ranking functions, which are bounded by 0.

f3403_0__init__LE: x24

2.1.2 Trivial Cooperation Program

There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.

2.2 SCC Subproblem 2/6

Here we consider the SCC { f2624_0__init__LE }.

2.2.1 Transition Removal

We remove transitions 16, 17, 18, 19, 20 using the following ranking functions, which are bounded by 0.

f2624_0__init__LE: x24

2.2.2 Trivial Cooperation Program

There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.

2.3 SCC Subproblem 3/6

Here we consider the SCC { f3783_0__init__LE }.

2.3.1 Transition Removal

We remove transitions 32, 33, 34, 35, 36 using the following ranking functions, which are bounded by 0.

f3783_0__init__LE: x27

2.3.2 Trivial Cooperation Program

There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.

2.4 SCC Subproblem 4/6

Here we consider the SCC { f6375_0_hasNext_EQ, f6874_0_equals_NE }.

2.4.1 Transition Removal

We remove transitions 53, 52 using the following ranking functions, which are bounded by 0.

f6375_0_hasNext_EQ: −11⋅x13 + 11⋅x12 + 3⋅x5
f6874_0_equals_NE: −11⋅x17 + 11⋅x16 + 3⋅x7 + 10

2.4.2 Transition Removal

We remove transition 54 using the following ranking functions, which are bounded by 0.

f6375_0_hasNext_EQ: 11 + x5 + 3⋅x6 − 5⋅x7 + x12 − 3⋅x13 + x14
f6874_0_equals_NE: −31 + 5⋅x1 + 3⋅x2 − 5⋅x10 − 3⋅x17

2.4.3 Transition Removal

We remove transition 51 using the following ranking functions, which are bounded by 0.

f6375_0_hasNext_EQ: x13 + x12

2.4.4 Trivial Cooperation Program

There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.

2.5 SCC Subproblem 5/6

Here we consider the SCC { f6290_0_createList_LE }.

2.5.1 Transition Removal

We remove transitions 13, 14 using the following ranking functions, which are bounded by 0.

f6290_0_createList_LE: x2

2.5.2 Trivial Cooperation Program

There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.

2.6 SCC Subproblem 6/6

Here we consider the SCC { f1849_0_createList_LE }.

2.6.1 Transition Removal

We remove transitions 9, 10 using the following ranking functions, which are bounded by 0.

f1849_0_createList_LE: x2

2.6.2 Trivial Cooperation Program

There are no more "sharp" transitions in the cooperation program. Hence the cooperation termination is proved.

Tool configuration

AProVE