LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Invariant Updates

The following invariants are asserted.

0: arg1P ≤ 08 − arg2P ≤ 0−1 + arg5P ≤ 01 − arg5P ≤ 0arg6P ≤ 0arg6P ≤ 0arg7P ≤ 0arg7P ≤ 0arg1 ≤ 08 − arg2 ≤ 0−1 + arg5 ≤ 01 − arg5 ≤ 0arg6 ≤ 0arg6 ≤ 0arg7 ≤ 0arg7 ≤ 0
1: arg1P ≤ 010 − arg2P ≤ 0arg3P ≤ 0arg3P ≤ 0arg4P ≤ 0arg4P ≤ 0arg8P ≤ 0arg8P ≤ 0arg9P ≤ 0arg9P ≤ 0arg10P ≤ 0arg10P ≤ 0−1 + arg19P ≤ 0arg20P ≤ 0arg23P ≤ 0arg1 ≤ 010 − arg2 ≤ 0arg3 ≤ 0arg3 ≤ 0arg4 ≤ 0arg4 ≤ 0arg8 ≤ 0arg8 ≤ 0arg9 ≤ 0arg9 ≤ 0arg10 ≤ 0arg10 ≤ 0−1 + arg19 ≤ 0arg20 ≤ 0arg23 ≤ 0
2: TRUE
3: 7 − arg1P ≤ 07 − arg1 ≤ 0x26 ≤ 0
5: arg2P ≤ 0arg2 ≤ 0x26 ≤ 0x41 ≤ 0x50 ≤ 0
6: arg2P ≤ 0arg2 ≤ 0x26 ≤ 0x62 ≤ 0x71 ≤ 0
7: 1 − arg1P ≤ 0arg12P ≤ 0arg12P ≤ 01 − arg1 ≤ 0arg12 ≤ 0arg12 ≤ 0
8: TRUE

The invariants are proved as follows.

IMPACT Invariant Proof

2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
5 14 5: x81 + x81 ≤ 0x81x81 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x72 + x72 ≤ 0x72x72 ≤ 0x71 + x71 ≤ 0x71x71 ≤ 0x62 + x62 ≤ 0x62x62 ≤ 0x60 + x60 ≤ 0x60x60 ≤ 0x56 + x56 ≤ 0x56x56 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x50 + x50 ≤ 0x50x50 ≤ 0x41 + x41 ≤ 0x41x41 ≤ 0x26 + x26 ≤ 0x26x26 ≤ 0x193 + x193 ≤ 0x193x193 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg25P + arg25P ≤ 0arg25Parg25P ≤ 0arg25 + arg25 ≤ 0arg25arg25 ≤ 0arg24P + arg24P ≤ 0arg24Parg24P ≤ 0arg24 + arg24 ≤ 0arg24arg24 ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
6 21 6: x81 + x81 ≤ 0x81x81 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x72 + x72 ≤ 0x72x72 ≤ 0x71 + x71 ≤ 0x71x71 ≤ 0x62 + x62 ≤ 0x62x62 ≤ 0x60 + x60 ≤ 0x60x60 ≤ 0x56 + x56 ≤ 0x56x56 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x50 + x50 ≤ 0x50x50 ≤ 0x41 + x41 ≤ 0x41x41 ≤ 0x26 + x26 ≤ 0x26x26 ≤ 0x193 + x193 ≤ 0x193x193 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg25P + arg25P ≤ 0arg25Parg25P ≤ 0arg25 + arg25 ≤ 0arg25arg25 ≤ 0arg24P + arg24P ≤ 0arg24Parg24P ≤ 0arg24 + arg24 ≤ 0arg24arg24 ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
7 28 7: x81 + x81 ≤ 0x81x81 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x72 + x72 ≤ 0x72x72 ≤ 0x71 + x71 ≤ 0x71x71 ≤ 0x62 + x62 ≤ 0x62x62 ≤ 0x60 + x60 ≤ 0x60x60 ≤ 0x56 + x56 ≤ 0x56x56 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x50 + x50 ≤ 0x50x50 ≤ 0x41 + x41 ≤ 0x41x41 ≤ 0x26 + x26 ≤ 0x26x26 ≤ 0x193 + x193 ≤ 0x193x193 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg25P + arg25P ≤ 0arg25Parg25P ≤ 0arg25 + arg25 ≤ 0arg25arg25 ≤ 0arg24P + arg24P ≤ 0arg24Parg24P ≤ 0arg24 + arg24 ≤ 0arg24arg24 ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0
and for every transition t, a duplicate t is considered.

3 Transition Removal

We remove transitions 0, 1, 3, 6, 9, 10, 13 using the following ranking functions, which are bounded by −25.

8: 0
2: 0
3: 0
5: 0
6: 0
0: 0
1: 0
7: 0
8: −9
2: −10
3: −11
5: −12
5_var_snapshot: −12
5*: −12
6: −15
6_var_snapshot: −15
6*: −15
0: −18
1: −19
7: −20
7_var_snapshot: −20
7*: −20
Hints:
15 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
22 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
29 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
4 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
5 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
7 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
8 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
11 lexWeak[ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
12 lexWeak[ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
0 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
1 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
3 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
6 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
9 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
10 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
13 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5* 17 5: x81 + x81 ≤ 0x81x81 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x72 + x72 ≤ 0x72x72 ≤ 0x71 + x71 ≤ 0x71x71 ≤ 0x62 + x62 ≤ 0x62x62 ≤ 0x60 + x60 ≤ 0x60x60 ≤ 0x56 + x56 ≤ 0x56x56 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x50 + x50 ≤ 0x50x50 ≤ 0x41 + x41 ≤ 0x41x41 ≤ 0x26 + x26 ≤ 0x26x26 ≤ 0x193 + x193 ≤ 0x193x193 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg25P + arg25P ≤ 0arg25Parg25P ≤ 0arg25 + arg25 ≤ 0arg25arg25 ≤ 0arg24P + arg24P ≤ 0arg24Parg24P ≤ 0arg24 + arg24 ≤ 0arg24arg24 ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5 15 5_var_snapshot: x81 + x81 ≤ 0x81x81 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x72 + x72 ≤ 0x72x72 ≤ 0x71 + x71 ≤ 0x71x71 ≤ 0x62 + x62 ≤ 0x62x62 ≤ 0x60 + x60 ≤ 0x60x60 ≤ 0x56 + x56 ≤ 0x56x56 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x50 + x50 ≤ 0x50x50 ≤ 0x41 + x41 ≤ 0x41x41 ≤ 0x26 + x26 ≤ 0x26x26 ≤ 0x193 + x193 ≤ 0x193x193 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg25P + arg25P ≤ 0arg25Parg25P ≤ 0arg25 + arg25 ≤ 0arg25arg25 ≤ 0arg24P + arg24P ≤ 0arg24Parg24P ≤ 0arg24 + arg24 ≤ 0arg24arg24 ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6* 24 6: x81 + x81 ≤ 0x81x81 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x72 + x72 ≤ 0x72x72 ≤ 0x71 + x71 ≤ 0x71x71 ≤ 0x62 + x62 ≤ 0x62x62 ≤ 0x60 + x60 ≤ 0x60x60 ≤ 0x56 + x56 ≤ 0x56x56 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x50 + x50 ≤ 0x50x50 ≤ 0x41 + x41 ≤ 0x41x41 ≤ 0x26 + x26 ≤ 0x26x26 ≤ 0x193 + x193 ≤ 0x193x193 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg25P + arg25P ≤ 0arg25Parg25P ≤ 0arg25 + arg25 ≤ 0arg25arg25 ≤ 0arg24P + arg24P ≤ 0arg24Parg24P ≤ 0arg24 + arg24 ≤ 0arg24arg24 ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

7 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6 22 6_var_snapshot: x81 + x81 ≤ 0x81x81 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x72 + x72 ≤ 0x72x72 ≤ 0x71 + x71 ≤ 0x71x71 ≤ 0x62 + x62 ≤ 0x62x62 ≤ 0x60 + x60 ≤ 0x60x60 ≤ 0x56 + x56 ≤ 0x56x56 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x50 + x50 ≤ 0x50x50 ≤ 0x41 + x41 ≤ 0x41x41 ≤ 0x26 + x26 ≤ 0x26x26 ≤ 0x193 + x193 ≤ 0x193x193 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg25P + arg25P ≤ 0arg25Parg25P ≤ 0arg25 + arg25 ≤ 0arg25arg25 ≤ 0arg24P + arg24P ≤ 0arg24Parg24P ≤ 0arg24 + arg24 ≤ 0arg24arg24 ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

8 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

7* 31 7: x81 + x81 ≤ 0x81x81 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x72 + x72 ≤ 0x72x72 ≤ 0x71 + x71 ≤ 0x71x71 ≤ 0x62 + x62 ≤ 0x62x62 ≤ 0x60 + x60 ≤ 0x60x60 ≤ 0x56 + x56 ≤ 0x56x56 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x50 + x50 ≤ 0x50x50 ≤ 0x41 + x41 ≤ 0x41x41 ≤ 0x26 + x26 ≤ 0x26x26 ≤ 0x193 + x193 ≤ 0x193x193 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg25P + arg25P ≤ 0arg25Parg25P ≤ 0arg25 + arg25 ≤ 0arg25arg25 ≤ 0arg24P + arg24P ≤ 0arg24Parg24P ≤ 0arg24 + arg24 ≤ 0arg24arg24 ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

9 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

7 29 7_var_snapshot: x81 + x81 ≤ 0x81x81 ≤ 0x77 + x77 ≤ 0x77x77 ≤ 0x72 + x72 ≤ 0x72x72 ≤ 0x71 + x71 ≤ 0x71x71 ≤ 0x62 + x62 ≤ 0x62x62 ≤ 0x60 + x60 ≤ 0x60x60 ≤ 0x56 + x56 ≤ 0x56x56 ≤ 0x51 + x51 ≤ 0x51x51 ≤ 0x50 + x50 ≤ 0x50x50 ≤ 0x41 + x41 ≤ 0x41x41 ≤ 0x26 + x26 ≤ 0x26x26 ≤ 0x193 + x193 ≤ 0x193x193 ≤ 0x158 + x158 ≤ 0x158x158 ≤ 0x157 + x157 ≤ 0x157x157 ≤ 0x116 + x116 ≤ 0x116x116 ≤ 0arg9P + arg9P ≤ 0arg9Parg9P ≤ 0arg9 + arg9 ≤ 0arg9arg9 ≤ 0arg8P + arg8P ≤ 0arg8Parg8P ≤ 0arg8 + arg8 ≤ 0arg8arg8 ≤ 0arg7P + arg7P ≤ 0arg7Parg7P ≤ 0arg7 + arg7 ≤ 0arg7arg7 ≤ 0arg6P + arg6P ≤ 0arg6Parg6P ≤ 0arg6 + arg6 ≤ 0arg6arg6 ≤ 0arg5P + arg5P ≤ 0arg5Parg5P ≤ 0arg5 + arg5 ≤ 0arg5arg5 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg25P + arg25P ≤ 0arg25Parg25P ≤ 0arg25 + arg25 ≤ 0arg25arg25 ≤ 0arg24P + arg24P ≤ 0arg24Parg24P ≤ 0arg24 + arg24 ≤ 0arg24arg24 ≤ 0arg23P + arg23P ≤ 0arg23Parg23P ≤ 0arg23 + arg23 ≤ 0arg23arg23 ≤ 0arg22P + arg22P ≤ 0arg22Parg22P ≤ 0arg22 + arg22 ≤ 0arg22arg22 ≤ 0arg21P + arg21P ≤ 0arg21Parg21P ≤ 0arg21 + arg21 ≤ 0arg21arg21 ≤ 0arg20P + arg20P ≤ 0arg20Parg20P ≤ 0arg20 + arg20 ≤ 0arg20arg20 ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg19P + arg19P ≤ 0arg19Parg19P ≤ 0arg19 + arg19 ≤ 0arg19arg19 ≤ 0arg18P + arg18P ≤ 0arg18Parg18P ≤ 0arg18 + arg18 ≤ 0arg18arg18 ≤ 0arg17P + arg17P ≤ 0arg17Parg17P ≤ 0arg17 + arg17 ≤ 0arg17arg17 ≤ 0arg16P + arg16P ≤ 0arg16Parg16P ≤ 0arg16 + arg16 ≤ 0arg16arg16 ≤ 0arg15P + arg15P ≤ 0arg15Parg15P ≤ 0arg15 + arg15 ≤ 0arg15arg15 ≤ 0arg14P + arg14P ≤ 0arg14Parg14P ≤ 0arg14 + arg14 ≤ 0arg14arg14 ≤ 0arg13P + arg13P ≤ 0arg13Parg13P ≤ 0arg13 + arg13 ≤ 0arg13arg13 ≤ 0arg12P + arg12P ≤ 0arg12Parg12P ≤ 0arg12 + arg12 ≤ 0arg12arg12 ≤ 0arg11P + arg11P ≤ 0arg11Parg11P ≤ 0arg11 + arg11 ≤ 0arg11arg11 ≤ 0arg10P + arg10P ≤ 0arg10Parg10P ≤ 0arg10 + arg10 ≤ 0arg10arg10 ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

10 SCC Decomposition

We consider subproblems for each of the 3 SCC(s) of the program graph.

10.1 SCC Subproblem 1/3

Here we consider the SCC { 5, 5_var_snapshot, 5* }.

10.1.1 Transition Removal

We remove transitions 4, 5 using the following ranking functions, which are bounded by 2.

5: 1 + 3⋅arg1
5_var_snapshot: 3⋅arg1
5*: 2 + 3⋅arg1
Hints:
15 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ]
17 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] ]
4 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
5 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

10.1.2 Transition Removal

We remove transitions 15, 17 using the following ranking functions, which are bounded by −1.

5: 0
5_var_snapshot: −1
5*: 1
Hints:
15 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
17 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

10.1.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

10.1.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 14.

10.1.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

10.2 SCC Subproblem 2/3

Here we consider the SCC { 6, 6_var_snapshot, 6* }.

10.2.1 Transition Removal

We remove transitions 7, 8 using the following ranking functions, which are bounded by −1.

6: 1 − 3⋅arg1 + 3⋅arg2
6_var_snapshot: −3⋅arg1 + 3⋅arg2
6*: 2 − 3⋅arg1 + 3⋅arg2
Hints:
22 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3] ]
24 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3] ]
7 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
8 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

10.2.2 Transition Removal

We remove transitions 22, 24 using the following ranking functions, which are bounded by −1.

6: 0
6_var_snapshot: −1
6*: 1
Hints:
22 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
24 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

10.2.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

10.2.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 21.

10.2.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

10.3 SCC Subproblem 3/3

Here we consider the SCC { 7, 7_var_snapshot, 7* }.

10.3.1 Transition Removal

We remove transitions 29, 31, 11, 12 using the following ranking functions, which are bounded by −1.

7: 1
7_var_snapshot: 0
7*: 2
Hints:
29 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
31 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
11 lexStrict[ [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
12 lexStrict[ [0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

10.3.2 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

10.3.2.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 28.

10.3.2.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert